
CS 471

OS/161 Threads/Synchronization

Tips and Tricks
• Get familiar with code, specifically the following directories in

kern
– thread, userprog, main, vm – You might end up modifying files in

these
– Inside /mips: spl.c, syscall.c, trap.c, exception.s, threadstart.s

• Get familiar with the following commands in zeus:
– Screen –creates new windows (Will be helpful in debugging)
– Find (search for files)
– Grep is your friend (grep –rw ‘path’ –e ‘pattern’ search for pattern)
– If you are using two separate sessions for debugging use the same

node in both sessions (zeus runs on two nodes use
zeus1.vse.gmu.edu instead of just zeus.vse.gmu.edu while logging
in)

– Familiarize with some gdb commands: where, frame, info
– https://ccrma.stanford.edu/~jos/stkintro/Useful_commands_gdb.html
– https://sourceware.org/gdb/onlinedocs/gdb/Registers.html

https://ccrma.stanford.edu/~jos/stkintro/Useful_commands_gdb.html
https://sourceware.org/gdb/onlinedocs/gdb/Registers.html

Review: Program Execution
• Registers

– program counter, stack pointer, . . .
• Memory

– program code
– program data
– program stack containing procedure
activation records

• CPU
– fetches and executes instructions

Implementing Threads
• A thread library is responsible for implementing

threads
• The thread library stores threads’ contexts (or

pointers to the threads’ contexts) when they are
not running

• The data structure used by the thread library to
store the misc. hardware-specific thread context is
called a thread control block (in os161 t_pcb)

• In the OS/161 kernel’s thread implementation,
thread contexts are stored in thread structures

The OS/161 Thread Structure

How Does it Start?
• thread_bootstrap(): this is where it starts,

the first thread is created here and this is
made as the current thread (Where is this
function called?)

• curthread points to the thread that is
currently running (look for curthread.h)

• Thread specific information is stored in
struct thread

Context Switch, Scheduling, and
Dispatching

• What is context switch? Why do we need one?
• What is the context of a thread, that will help us to resume if

we stopped now?
• The act of saving the context of the current thread and

resuming the context of the next thread to run is called
dispatching (the next thread)

• Sounds simple, but . . .
– architecture-specific implementation
– thread must save/restore its context carefully, since

thread execution continuously changes the context
– can be tricky to understand (at what point does a thread

actually stop? What is it executing when it resumes?)
– To answer the above questions in os161 look into

hardclock.c

Dispatching on the MIPS

Dispatching on the MIPS (cont.)

Thread Library and Two Threads

The OS/161 Thread Interface
(incomplete)

Creating a New Thread
• Heard of fork? What does fork do?
• thread_fork is the like fork, but they are not

quite the same
• It creates a new thread, allocates its stack

space and inherits the directory from current
thread. The new thread starts in the provided
function pointer, and takes two arguments

• How is it different from fork?
• What if you want to pass more than 2

arguments?

Creating Threads using
thread_fork()

Scheduling

What is Going on Here?

Other Ways
• Use synchronization primitives

– Locks
– Semaphores
– Condition Variables

• Use hardware-based synchronization:
– Test_and_set()
– Compare_and_swap()

Using SpinLocks or disabling
interrupts to do this inside the

kernel

Why are We Looking at This?
• For Project #1 you are going to complete the

code for the synchronization primitive locks
• Although they are different from semaphores

looking at semaphores implementation can
give some insight one how to design the
locks

• Specifically you will get to know what
precautions to take in making sure your locks
meet the required conditions for
synchronization primitives

Not fully implemented. This is what you need to code.

What functions
from locks can

be used
instead of P
and V here?

What is the purpose
of including the code

between splhigh()
and splx(spl)

Pay attention to
the instructions

between splhigh()
and splx(spl)

Testing your work

• Use the existing tests in os161 to test your
work

• ?t – will list the available tests in os161
• Once you are done with your locks, use

sy2 to test them. You will get to know if
you are locks are working or not.

• Don’t start with synchronization problem
before your locks are working correctly.

