
CS471	ASST2
System	Calls

Save	all	of	us	some	time	and	
do	NOT	attempt	to	find	a	

solution	online.

Deliverables

• Code	walk-through	(20	points)
• Same	as	previous	assignments.

• Implementations	(60	points)
• System	calls

• getpid
• execv
• fork
• waitpid
• exit

• Multi-level	queue	scheduler

Deliverables

• Design	document	(20	points)
• Answers	to	the	code	walk-through	questions.
• A	high	level	description	of	how	you	are	approaching	the	problem.	(4	pts)
• A	detailed	description	of	the	implementation	(e.g.,	new	structures,	why	they	
were	created,	what	they	are	encapsulating,	what	problems	they	solve).	(6	
pts)

• A	discussion	of	the	pros	and	cons	of	your	approach.	(6	pts)
• Alternatives	you	considered	and	why	you	discarded	them.	(4	pts)

• The	output	of	the	tests.

Extra	credit

•Extra	Credit:	(TBD	points)
• File	system	calls

• open
• read
• write
• lseek
• close
• dup2
• chdir
• getcwd

Configuration

• You	can	use	build-asst2.php	file
• wget mason.gmu.edu/~aroy6/build-asst2.php

What	is	a	system	call

• A	System	Call	is	a	software	interface
• Part	of	kernel
• Called	by	User-programs

• Why	do	we	need	this?
• The	Operating	System	needs	to	look	over	the	user	programs

• The	“Government”	metaphor

• User-programs	have	limited	privilege	(can	be	erroneous	or	malicious)
• Should	not	be	able	to	access	critical	resources	(e.g.,	file	system)	directly

• Invoking	a	system	call	hands	control	over	to	the	OS,	which	can	execute	
privileged	instructions

User-Level	Interface

• Os161-1.11/include/uninstd.h contains	the	user-level	system	call	
interfaces.

• int execv(const char	*prog,	char	*const *args);
• pid_t fork(void);
• int waitpid(pid_t pid,	int *returncode,	int flags);
• int open(const char	*filename,	int flags,	...);
• int read(int filehandle,	void	*buf,	size_t size);
• int write(int filehandle,	const void	*buf,	size_t size);
• int close(int filehandle);
• int reboot(int code);
• int sync(void);

How	is	it	linked?

Exception.S

Mips_trap()

Mips_syscall()Kern/arch/mips/mips

Your	system	call	
implementation

Where	to	put	your	system	call	implementation?
• This	time	no	skeleton	code	is	given.
• Create	under	kern/userprog

• fork.c
• execv.c
• waitpid.c
• getpid.c
• exit.c

• Name	your	system	calls	sys_{getpid|fork|execv|waitpid|exit}
• Add	the	new	file	to	kern/conf

• File	userprog/getpid.c
• The	same	way	you	have	done	hello.c in	ASST0.

•Include	your	system	call	function	definition	in	kern/include/syscall.h

Process	structure

• A	common	hack.
• Add	the	necessary	fields	to	the	thread	structure	and	treat	it	as	a	process.

• Pid
• Exit	status
• Parent	process.
• Etc.

For	each	system	call

•Make	sure	to	increment	process	counter.
•Otherwise,	it	will	restart	the	same	system	call.
•Tf->tf_epc+=4

•If	error
•Store	the	error	code	in	tf->tf_v0
•Set	tf->tf_a3	to	1.

•If	no	error
•Store	the	return	value	in	tf->tf_v0
•Set	tf->tf_a3	to	0.

Sys_getpid

• Simplest	one.
• Just	return	the	pid	of	the	executing	process.
• Getpid	does	not	fail.

Sys_execv
• Replace	the	currently	executing	program	image	with	a	new	process	image.
• Process	id	is	unchanged.
• int sys_execv(char	*program,	char	**args)	

•program:	path	name	of	the	program	to	run.
•Args:	tf->tf_a0	and	tf->tf_a1

• Most	of	the	implementation	is	already	in	the	runprogram.c.	Add	the	followings:
•Check	the	last	argument	in	**args is	NULL.
•Make	sure	it	is	less	than	MAX_ARGS_NUM
•copyin the	arguments	from	user	space	to	kernel	space.
•Create	a	new	address	space.	

•as_create()
•Allocate	a	stack	on	it.	

•as_define_stack()
•Copyout the	arguments	back	onto	the	new	stack

Sys_execv errors
ENODEV The device prefix of program did not exist.

ENOTDIR A non-final component of program was not a directory.

ENOENT program did not exist.

EISDIR program is a directory.

ENOEXEC program is not in a recognizable executable file format, was for
the wrong platform, or contained invalid fields.

ENOMEM Insufficient virtual memory is available.

E2BIG The total size of the argument strings is too large.

EIO A hard I/O error occurred.

EFAULT One of the args is an invalid pointer.

Sys_fork

• Duplicate the current process.
• Child process will have unique process id.

• int sys_fork(struct trapframe *tf, pid_t *retval)
• Child process returns 0.
• Parent process returns the pid of the child process.
• In case of an error, do not create a new child process and return -1.
• Most of the work is already done in thread_fork. Add the following:

• Create new process with a new pid. Add it to your process table.
• Copy the trapframe.
• Copy the address space.
• Call thread_fork.

Sys_fork
•Implement	md_forkentry

•Child	specific.
•Parent’s	trapframe and	address	space	are	passed	as	arguments.
•Create	new	child	trapframe.
•Set	tf_a3	to	0.
•Get	the	assigned	child	pid from	parent’s	trapframe tf_v0	and	assign	it	to	the	
pid of	the	current	process	(since	we	are	executing	md_forkentry,	this	is	child).
•Set	the	trapframe’s tf_v0	to	0.
•Increment	tf_epc by	4.
•Copy	the	passed	address	space	to	the	current	process	address	space	and	
activate	it.
•Give	the	control	back	to	the	usermode.

•Md_usermode and	pass	the	new	trapframe.

Sys_fork errors

EAGAIN Too many processes already exist.

ENOMEM Sufficient virtual memory for the new process was not
available.

Sys_waitpid

•Wait	for	the	process	with	pid to	exit.

•Return	its	exit	code	with	integer	pointer	status.
•Int sys_waitpid(pid_t pid,	userptr_t status,	int options,	pid_t *ret)

•tf->tf_a0,	(userptr_t)	tf->tf_a1,	tf->tf_a2,	&retval
•You	need	a	mechanism	for	processes	to	show	interest into	each	
other.

•You	can	add	restrictions	on	which	processes	can	show	interest.
•Make	sure	to	prevent	deadlocks	by	either	setting	restrictions	to	prevent	it	or	
to	implement	a	mechanism	to	detect	it.

•Return	the	pid with	status assigned	to	exit	status	on	success.
•If	error,	return	-1	and	set	the	ret	pointer	to	the	error	code.

Sys_waitpid errors

EINVAL The options argument requested invalid or unsupported
options.

EFAULT The status argument was an invalid pointer.

Sys_exit

•Causes	the	current	process	to	terminate.

•The	process	id	of	the	exiting	process	cannot	be	reused	if	there	are	
other	processes	interested in	it.

•Do	not	put	the	exited	pid back	to	available	pid pool	blindly.
•Void	sys__exit(int code)

•Code	is	the	exitcode that	will	be	assigned.

Scheduler

•Currently	os161	has	single	queue	round-robin	scheduler.
•You	can	modify	hardclock.c to	have	another	counter	that	counts	in	
HZ/2.

•Mostly	scheduler.c will	be	edited.
•Add	a	new	queue.
•Add	each	process	a	priority	and	modify	make_runnable to	match	the	thread	
and	queue	level	according	to	its	priority.
•Modify	the	scheduler	function	such	that	the	chances	of	picking	higher	level	
queue	will	increase.

Testing

•Os161/man/testbin has	the	details	about	given	tests.
•Contains	html	files.
•Read	them	carefully	and	understand	what	needs	to	be	implemented	to	pass	
the	tests.
•Be	careful:	some	of	them	requires	VM	management	to	work.

•Forktest is	very	useful.
•Also	test	cp example	in	the	assignment	description.

•Shell	implementation	is	given	but	not	necessary.
•You	can	call	the	tests	by	p	/testbin/forktest

•A	basic	sys_write and	sys_read also	provided.	These	will	be	
necessary	for	testing.

Testing

•Build	you	own	tests.
•Repeat	some	of	the	tests	with	your	new	scheduler	enabled.

•Make	sure	to	include	all	the	test	outputs	in	your	submission.

Thank	you

