
CS 795: Distributed Systems
& Cloud Computing

Fall 2018

Lec 1: Clouds & Data consistency
Yue Cheng

Announcement
• Paper presentation Doodle sign-up is out. Please

complete by signing-up at least 2 papers by this
Friday

• After that, presentation schedule will be sorted out
quickly

 2

What is Cloud Computing?

 3

What is Cloud Computing?
• Computing as a utility

• Outsourced to a third party or internal organization

• Providers do more, tenants do less

 4

Types of cloud services
• Infrastructure as a Service (IaaS): VMs, storage

 5

Types of cloud services
• Infrastructure as a Service (IaaS): VMs, storage

• Platform as a Service (PaaS): Web, MapReduce

 6

Types of cloud services
• Infrastructure as a Service (IaaS): VMs, storage

• Platform as a Service (PaaS): Web, MapReduce

• Software as a Service (SaaS): Email, Messenger

 7

New cloud computing paradigm
• Function as a Service (FaaS)

• AWS Lambda
• Google Cloud Functions
• Microsoft Azure Functions

• Runs functions in a Linux container on events
• Tenants focus on function logics without needing to

worry about backend server maintenance, auto-
scaling, etc.

 8

Public vs. private clouds
• Public clouds

• Shared across arbitrary orgs/customers

• Private clouds
• Internal/private to one organization

 9

Cloud economics: Tenants
• Pay-as-you-go (usage-based) pricing

• Most services charged per minute, per byte, etc.
• No minimum or up-front fee

 10

Cloud economics: Tenants
• Pay-as-you-go (usage-based) pricing

• Most services charged per minute, per byte, etc.
• No minimum or up-front fee

• Problem: How to perform strategic planning?

 11

Cloud economics: Tenants
• Pay-as-you-go (usage-based) pricing

• Most services charged per minute, per byte, etc.
• No minimum or up-front fee

• Problem: How to perform strategic planning?

 12

Cloud economics: Tenants
• Pay-as-you-go (usage-based) pricing

• Most services charged per minute, per byte, etc.
• No minimum or up-front fee

• Problem: How to perform strategic planning?

 13

Caveat: Not essentially Pay-as-You-Go!
• Why?

Cloud economics: Tenants
• Elasticity

• Using 1000 servers for 1 hour costs the same as 1
server for 1000 hours

• Same price to get a result faster

 14

Resources

Time

Resources

Time

Cloud economics: Tenants
• Elasticity

• Using 1000 servers for 1 hour costs the same as 1
server for 1000 hours

• Same price to get a result faster

 15

Resources

Time

Resources

Time

This really depends, however, case-by-case
• What if data source is at the cloud edge?

Cloud economics: Providers
• Economies of scale

• Purchasing, powering, managing machines at scale
gives lower per-unit costs than that of costumers

•

 16

Technology Cost in Medium DC Cost in Large DC Ratio

Network $95 per Mbit/sec/month $13 per Mbit/sec/month 7.1

Storage $2.2 per GB/month $0.4 per GB/month 5.7

Admin. ~140 Servers/admin >1000 Servers/admin. 7.1

Cloud economics: Providers
• Economies of scale

• Purchasing, powering, managing machines at scale
gives lower per-unit costs than that of costumers

• Leveraging existing investments: Many AWS
technologies were initially developed for Amazon’s
internal operations

 17

Technology Cost in Medium DC Cost in Large DC Ratio

Network $95 per Mbit/sec/month $13 per Mbit/sec/month 7.1

Storage $2.2 per GB/month $0.4 per GB/month 5.7

Admin. ~140 Servers/admin >1000 Servers/admin. 7.1

Common cloud applications
• Web/mobile applications
• Data analytics (MapReduce, SQL, ML, etc.)
• Stream processing
• Parallel/HPC batch computation

 18

Cloud software stack

 19

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Operational stores
SQL, Spanner,

Dynamo, Bigtable, …

Other Services
Model serving, search,

Druid, …

Message Queue
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Metadata
Hive, AWS Catalog, …

C
oo

rd
in

at
io

n
C

hu
bb

y,
Zo

ok
ee

pe
r,

…
 Distributed Storage

Amazon S3, GFS, HDFS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …

M
et

er
in

g
+

Bi
llin

g

Se
cu

rit
y

(IA
M

)

Example: Web applications

 20

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Operational stores
SQL, Spanner,

Dynamo, Bigtable, …

Other Services
Model serving, search,

Druid, …

Message Queue
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Metadata
Hive, AWS Catalog, …

C
oo

rd
in

at
io

n
C

hu
bb

y,
Zo

ok
ee

pe
r,

…
 Distributed Storage

Amazon S3, GFS, HDFS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …

M
et

er
in

g
+

Bi
llin

g

Se
cu

rit
y

(IA
M

)

Example: Analytics warehouse

 21

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Operational stores
SQL, Spanner,

Dynamo, Bigtable, …

Other Services
Model serving, search,

Druid, …

Message Queue
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Metadata
Hive, AWS Catalog, …

C
oo

rd
in

at
io

n
C

hu
bb

y,
Zo

ok
ee

pe
r,

…
 Distributed Storage

Amazon S3, GFS, HDFS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …

M
et

er
in

g
+

Bi
llin

g

Se
cu

rit
y

(IA
M

)

Components offered as PaaS

 22

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Operational stores
SQL, Spanner,

Dynamo, Bigtable, …

Other Services
Model serving, search,

Druid, …

Message Queue
Kafka, Kinesis, …

Analytics UIs
Hive, Pig, HiPal, …

Analytics Engines
MapReduce, Dryad,

Pregel, Spark, …

Metadata
Hive, AWS Catalog, …

C
oo

rd
in

at
io

n
C

hu
bb

y,
Zo

ok
ee

pe
r,

…
 Distributed Storage

Amazon S3, GFS, HDFS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …

M
et

er
in

g
+

Bi
llin

g

Se
cu

rit
y

(IA
M

)

Cloud economics case study:
Pricing games for hybrid cloud object stores

 23

Google Cloud Storage
Swift

*: Pricing games for hybrid object stores in the cloud: Provider vs. tenant [USENIX HotCloud’15]

Data analytics over object stores

 24

Cloud tenants

Google Cloud Storage

Swift

Hadoop to object
store connectors

Cloud object stores

Cloud object stores heavily rely on
spinning HDDs

 25

Google Cloud Storage
Swift

HDD-based object store??

 26

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

60 80 100 120 140 160 180

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

Tenant workload runtime (hour)

HDD only, trace 1

HDD only, trace 2

deadline

HDD pricing in EC2:
$0.0011/GB/day

Trace 1: 12TB input + 5TB output
Trace 2: 18TB input + 8TB output

Tenants not able to meet deadline
Provider gets low profit

SSD-based object store??

 27

HDD pricing in EC2:
$0.0011/GB/day

Trace 1: 12TB input + 5TB output
Trace 2: 18TB input + 8TB output

SSD-based object store helps meet workload deadline
for tenants while increasing profit for provider

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

60 80 100 120 140 160 180

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

Tenant workload runtime (hour)

HDD only, trace 1

HDD only, trace 2

deadline

SSD only, trace 1

SSD only, trace 2

SSD pricing in EC2:
$0.0044/GB/day

SSD-based object store??

 28

HDD pricing in EC2:
$0.0011/GB/day

Trace 1: 12B input + 5TB output
Trace 2: 18B input + 8TB output

SSD-based object store helps meet workload deadline
for tenants while increasing profit for provider

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

60 80 100 120 140 160 180

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

Tenant workload runtime (hour)

HDD only, trace 1

HDD only, trace 2

deadline

SSD only, trace 1

SSD only, trace 2

SSD pricing in EC2:
$0.0044/GB/day Unfortunately, 100% SSD deployment across DC may

not be viable!

A hybrid object store??

 29

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

60 80 100 120 140 160 180

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

Tenant workload runtime (hour)

deadline

HDD only, trace 2

SSD only, trace 1

SSD only, trace 2

HDD+SSD, trace 2

HDD+SSD, trace 1

HDD only, trace 1

HDD pricing in EC2:
$0.0011/GB/day

Trace 1: 12TB input + 5TB output
Trace 2: 18TB input + 8TB output

SSD pricing in EC2:
$0.0044/GB/day

Tenants are happy since workloads meet deadline
Provider is happy with comparatively high profit

More options in a hybrid setup

 30

Read latency

$/GBlow high
low

high
HDDs

Slow/fast RPMs

NAND SSDs
SATA, PCIe, …

NVMs
PCM, PPAM, …

More options in a hybrid setup

 31

Read latency

$/GBlow high
low

high
HDDs

Slow/fast RPMs

NAND SSDs
SATA, PCIe, …

NVMs
PCM, PPAM, …

Performance/
endurance tradeoff

A dynamic pricing model
• Two objectives

• Objective 1: to balance the increasing profit and SSD
wearout rate

• Objective 2: to provide incentivizing mechanism to
tenants

 32

A dynamic pricing model
• Dynamic pricing engages both provider and

tenants in a pricing game
• Objectives of provider and tenants are essentially

conflicting!

 33

The leader/follower game

 34

Provider leader Tenant follower

SSD price p(n,ssd)

Writes on SSD w(n,ssd)

Time slot n+1

Step 2: Make
tiering decision
based on
requirement

Step 1: Make price
decision

Fraction of SSD used f(n,ssd)

Time slot n

Impact of different SSD pricing

 35

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

sta
tic

 lo
w

sta
tic

 m
ed

ium

sta
tic

 hi
gh

dy
na

mic

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

sta
tic

 lo
w

sta
tic

 m
ed

ium

sta
tic

 hi
gh

dy
na

mic

N
or

m
al

iz
ed

 te
na

nt
 u

til
ity

Static low:
$0.0035/GB/day

Static high:
$0.0121/GB/day

Static medium:
$0.0082/GB/day

Cloud provider Tenant

Case study summary

 36

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

sta
tic

 lo
w

sta
tic

 m
ed

ium

sta
tic

 hi
gh

dy
na

mic

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

sta
tic

 lo
w

sta
tic

 m
ed

ium

sta
tic

 hi
gh

dy
na

mic

N
or

m
al

iz
ed

 te
na

nt
 u

til
ity

Static low:
$0.0035/GB/day

Static high:
$0.0121/GB/day

Static medium:
$0.0082/GB/day

Dynamic pricing + object store tiering =
cloud profit improvement + tenant utility improvement

Dynamic pricing in AWS EC2

 37

Instance type Cost Spin-up Termination

Reserved High upfront,
Low per hour Deterministic Non-preemptible

On-demand No upfront,
High per hour May fail Non-preemptible

Spot No upfront,
Low per hour May fail Preemptible

Total cost of ownership (TCO)
• TCO = capital (CapEx) + operational (OpEx) expenses

• Provider’s perspective
• CapEx: building, generators, cooling, compute/storage/network

hardware (including spares, amortized over 3—15 years)
• OpEx: electricity (5—7c/KWh), repairs, people, WAN,

insurance, …

• Tenant’s perspective
• CapEx: cost of long term leases on hardware and services

• OpEx: pay per use cost on hardware and services, people

 38

Provider’s TCO breakdown

 39

Hardware dominates TCO, make it cheap
Must utilize it as efficiently as possible

Warehouse-scale datacenter
management

 40

Datacenter underutilization has been
a notoriously persistent problem

 41

1: C. Delimitrou et al., Quasar: Resource-Efficient and QoS-Aware Cluster Management [ACM ASPLOS’14]
2: L. A. Barroso, U. Holzle: The Datacenter as a Computer, 2013

Alibaba datacenter utilization

 42

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]

Alibaba datacenter utilization

 43

> 80% time running b/w
10-30% CPU usage

> 50% memory usage
for over 55% time

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]

Alibaba datacenter util heatmap

 44

CPU usage Memory usage

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]

Alibaba datacenter util heatmap

 45

CPU usage Memory usage

Medium usage for
the 1st 4 hours

> 50% for
majority of time

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]

Datacenter reliability
• Failure in time (FIT)

• Failures per billion hours of operation = 109 /MTTF

• Mean time to failure (MTTF)
• Time to produce first incorrect output

• Mean time to repair (MTTR)
• Time to detect and repair a failure

 46

Service availability

 47

MTTF MTTR MTTF MTTR

Correct Failure FailureCorrect

Steady state availability = MTTF / (MTTF+MTTR)

Correct

Yearly datacenter flakiness

 48

~20 rack failures (40–80 machines instantly disappear, 1–6 hours to get back)
~5 racks go wonky (40–80 machines see 50% packet loss)
~3 router failures (have to immediately pull traffic for an hour)
~1000 individual machine failures (2—4% failure rate, machines crash at least
twice)
~thousands of hard drive failures (1—5% of all disks will die)

* Picture credit: Gunawi et al., Why does the cloud stop computing? [ACM SoCC’16]

Key availability techniques

 49

Technique Performance Availability

Replication √ √

Partitioning (sharding) √ √

Load balancing √

Watchdog timers √

Integrity checks √

Eventual consistency √ √

Make apps do something reasonable when not all is right
Better to give users limited functionality than an error page

Example: AWS S3 outage (Feb 2017)

 50

The CAP theorem
• In distributed systems, choose 2 out of 3

• Consistency: Every read returns data from most recent
writes

• Availability: Every request executes & receives a (non-
error) response

• Partition-tolerance: The system continues to function
when network partitions occur (messages dropped or
delayed)

 51

Why is Consistency important?
• Consistency = All nodes see the same data at any

time, or reads return latest written value by any
client

• Take multi-client bank account for example
• You want the updates done from one client to be visible

to other clients

• When thousands of customers are looking to book
a flight, all updates from any client (e.g., book a
flight) should be accessible by other clients
• Rather than mistakenly overbooking the same seat

three times (eventual consistency)
 52

Why is Availability important?
• Availability = Reads/writes complete reliably and

quickly
• Measurements have shown that a 500 ms increase in

latency for operations at amazon.com or at
google.com can cause a 20% drop in revenue

• At Amazon, each added millisecond (ms) of latency
implies a $6M yearly loss

• SLAs (Service-Level Agreement) written by providers
predominantly deal with:
• Availability percentages (X nines): 99.99% “four nines”
• Latencies faced by clients

 53

http://amazon.com
http://google.com

 54

*: https://cloudiqtech.com/aws-sla-summary/

Why is Partition-tolerance important?
• Partitions can happen across datacenters when the

Internet gets disconnected
• Internet router outages
• Under-sea cables cut
• DNS not working

• Partitions can also occur within a datacenter
• E.g., a rack switch outage

• Still desire system to continue functioning normally
under this scenario

 55

The CAP theorem fallout
• Since partition-tolerance is essential in today’s

cloud computing systems, CAP theorem implies
that a system has to choose between consistency
and availability

• Cassandra: Eventual (weak) consistency,
availability, and partition-tolerance

• Traditional RDBMSs (relational database
management systems): Strong consistency over
availability under a network partitioning

 56

Replicated distributed storage
• A distributed storage system that partitions the

whole namespace into shards
• Each shard is replicated N times for fault tolerance and

performance

• How close does the distributed storage system
emulate a single machine in terms of read and
write semantics?

 57

Key-value stores
• RDBMS provide ACID guarantee of a transaction

• Atomicity
• Consistency
• Isolation
• Durability

• Key-value stores like Cassandra provide BASE
• Basically Available Soft-state Eventual Consistency
• Prefers Availability over Consistency

 58

Consistency models

 59

*: Incremental consistency guarantees for replicated objects [USENIX OSDI’16]

(Strong) Consistency
• Strong consistency (client-perceived)

• Linearizability: Each update (successful) by a client is visible
(or available) instantaneously to all other clients

• Sequential consistency [Lamport]
• “… the result of any execution is the same as if the

operations of all the processors were executed in some
sequential order, and the operations of each individual

processor appear in this sequence in the order specified by
its program”

• After the fact, find a “reasonable” ordering of the operations (can
re-order operations) that obeys sanity (consistency) at all clients,
and across clients

• Sequantial = Linearizability - real-time ordering
 60

Consistency models

 61

*: Incremental consistency guarantees for replicated objects [USENIX OSDI’16]

Telephone intuition
1. Alice updates Facebook post

2. Alice calls Bob on phone: “Hey check my
Facebook post!”

3. Bob reads Alice’s wall, sees her post

 62

Strong consistency?

 63

R1

R2

R3

write(A,1)

success

read(A)
1

Phone call: Ensures happens-before relationship, even
though “out-of-band” communication

Strong consistency? This is buggy!

 64

R1

R2

R3

write(A,1)

success

read(A)
1

Isn’t sufficient to return value of third replica: It does not
know precisely when op is globally committed

committed

Strong consistency

 65

R1

R2

R3

write(A,1)

success

read(A)
1

Instead, need to actually order all operations via:
(1) leader, (2) consensus

leader

Server-side consistency
• How system understands consistency internally

under the hood
• Quorums

• N: The number of nodes that store a replica of data
• W: The number of replicas that need to

acknowledge the receipt of the update before the
update completes

• R: The number of replicas that are contacted when
a data object is accessed through a read operation

 66

Strong consistency with Quorum

 67

R1

R2

R3

write(A,1)

success

read(A)
1committed

Transaction
coordination

within W
quorum

N: 3 replicas of a data
W: 3 replicas ack before write commits
R: 1 replica needs to be contacted for a read

Strong consistency with Quorum

 68

R1

R2

R3

write(A,1)

success

read(A)
1committed

Transaction
coordination

within W
quorum

Understanding strong consistency: No matter on which
replica the read op is performed, the outcome will be the

same as it was read by any replica

Eventual consistency
• Eventual consistency (client-perceived)

• The storage system guarantees that if no new updates are made
to the object, eventually (after the inconsistency window closes)
all accesses will return the last updated value

• If writes continue, then system always tries to keep
converging
• May still return stale values to clients (e.g., if many back-to-back

writes)

• But works well when there are a few periods of low writes
• System converges quickly (eventually)

 69

Telephone intuition
1. Alice updates Facebook post

2. Alice calls Bob on phone: “Hey check my
Facebook post!”

3. Bob reads Alice’s wall, but does not see her post

4. Bob refreshes Alice’s wall, and eventually sees her
post

 70

Eventual consistency

 71

R1

R2

R3

write(A,1)

success

read(A)
&*$#

N: 3 replicas of a data
W: 1 replica ack before write commits
R: 1 replica needs to be contacted for a read

Eventual consistency

 72

R1

R2

R3

write(A,1)

success

read(A)
&*$#

Inconsistency window

Bob sees stale data within the inconsistency window

Eventual consistency

 73

R1

R2

R3

write(A,1)

success

read(A)
&*$#

Inconsistency window

Bob sees updated data eventually

read(A)
1

Consistency models

 74

*: Incremental consistency guarantees for replicated objects [USENIX OSDI’16]

Causal consistency
• Reads must respect partial order based on

information flow

• If Client 1 has communicated to Client 2 that it has
updated a data item, a subsequent access of Client 2
will return the updated value and a write is guaranteed
to supersede the earlier write

• Access by Client 3 that has no causal relationship to
Client 1 is subject to the normal eventual consistency
rules

 75

Causal consistency example

 76

Client 1

Client 2

Client 3

write(k1,33)

read(k1) return 33

write(k2,44)

read(k2) return 44write(k1,22) read(k1)
may return 22 or 33

read(k1)
must return 33

Causality, not messages

Announcement
• Homework assignment #1 is out

• Due by end of Sep 14

• Paper presentations will start from Week 4

• Next class
• Replicated storage system implementation
• Distributed consensus
• Read the papers on website for next class (Sep 12)

 77

Homework assignment 1
• Build a consistent cloud object store service atop eventually

consistent S3
• Leverage a consistent anchor (etcd)
• python-etcd provides distributed locking APIs and key-value APIs

using the backend Raft-enabled strongly consistent etcd key-value
store

• Core idea: leverage S3’s versioning support
• Enable versioning at the bucket level

• Puts store the latest version ID at etcd (metadata server)
• Gets fetch the latest version ID and then read from S3, ignores object

with stale version ID, until the version ID matches with what has been
read from etcd

• Get/Put/CreateBucket have to be protected using locks (etcd as a
lock server)

 78

Homework assignment 1

 79

Homework assignment 1

 80

Deploy etcd microservice

Implement Get/Put/CreateBucket APIs

