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Announcement
• Paper presentation Doodle sign-up is out. Please 

complete by signing-up at least 2 papers by this 
Friday 

• After that, presentation schedule will be sorted out 
quickly
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What is Cloud Computing?
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What is Cloud Computing?
• Computing as a utility 

• Outsourced to a third party or internal organization 

• Providers do more, tenants do less
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Types of cloud services
• Infrastructure as a Service (IaaS): VMs, storage
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Types of cloud services
• Infrastructure as a Service (IaaS): VMs, storage 

• Platform as a Service (PaaS): Web, MapReduce

• Software as a Service (SaaS): Email, Messenger
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New cloud computing paradigm
• Function as a Service (FaaS) 

• AWS Lambda 
• Google Cloud Functions 
• Microsoft Azure Functions 

• Runs functions in a Linux container on events 
• Tenants focus on function logics without needing to 

worry about backend server maintenance, auto-
scaling, etc.
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Public vs. private clouds
• Public clouds 

• Shared across arbitrary orgs/customers 

• Private clouds 
• Internal/private to one organization

 9



Cloud economics: Tenants
• Pay-as-you-go (usage-based) pricing 

• Most services charged per minute, per byte, etc. 
• No minimum or up-front fee
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Cloud economics: Tenants
• Pay-as-you-go (usage-based) pricing 

• Most services charged per minute, per byte, etc. 
• No minimum or up-front fee 

• Problem: How to perform strategic planning?
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Caveat: Not essentially Pay-as-You-Go! 
• Why?



Cloud economics: Tenants
• Elasticity 

• Using 1000 servers for 1 hour costs the same as 1 
server for 1000 hours 

• Same price to get a result faster
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Cloud economics: Tenants
• Elasticity 

• Using 1000 servers for 1 hour costs the same as 1 
server for 1000 hours 

• Same price to get a result faster
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This really depends, however, case-by-case 
• What if data source is at the cloud edge?



Cloud economics: Providers
• Economies of scale 

• Purchasing, powering, managing machines at scale 
gives lower per-unit costs than that of costumers 

•

 16

Technology Cost in Medium DC Cost in Large DC Ratio

Network $95 per Mbit/sec/month $13 per Mbit/sec/month 7.1

Storage $2.2 per GB/month $0.4 per GB/month 5.7

Admin. ~140 Servers/admin >1000 Servers/admin. 7.1



Cloud economics: Providers
• Economies of scale 

• Purchasing, powering, managing machines at scale 
gives lower per-unit costs than that of costumers 

• Leveraging existing investments: Many AWS 
technologies were initially developed for Amazon’s 
internal operations
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Technology Cost in Medium DC Cost in Large DC Ratio

Network $95 per Mbit/sec/month $13 per Mbit/sec/month 7.1

Storage $2.2 per GB/month $0.4 per GB/month 5.7

Admin. ~140 Servers/admin >1000 Servers/admin. 7.1



Common cloud applications
• Web/mobile applications 
• Data analytics (MapReduce, SQL, ML, etc.) 
• Stream processing 
• Parallel/HPC batch computation
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Cloud software stack
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Web Server 
Java, PHP, JS, … 

Cache 
memcached, TAO, … 

Operational stores 
SQL, Spanner, 

Dynamo, Bigtable, …

Other Services 
Model serving, search, 

Druid, …

Message Queue 
Kafka, Kinesis, … 

Analytics UIs 
Hive, Pig, HiPal, … 

Analytics Engines 
MapReduce, Dryad, 

Pregel, Spark, … 

Metadata 
Hive, AWS Catalog, …
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Example: Web applications

 20

Web Server
Java, PHP, JS, … 

Cache
memcached, TAO, … 

Operational stores
SQL, Spanner, 

Dynamo, Bigtable, …

Other Services
Model serving, search, 

Druid, …

Message Queue 
Kafka, Kinesis, … 

Analytics UIs 
Hive, Pig, HiPal, … 

Analytics Engines 
MapReduce, Dryad, 

Pregel, Spark, … 

Metadata 
Hive, AWS Catalog, …

C
oo

rd
in

at
io

n
C

hu
bb

y, 
Zo

ok
ee

pe
r, 

…
 Distributed Storage 

Amazon S3, GFS, HDFS, …

Resource Manager 
EC2, Borg, Mesos, Kubernetes, … 

M
et

er
in

g 
+ 

Bi
llin

g

Se
cu

rit
y 

(IA
M

)



Example: Analytics warehouse
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Components offered as PaaS
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Cloud economics case study: 
Pricing games for hybrid cloud object stores
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Google Cloud Storage
Swift

*: Pricing games for hybrid object stores in the cloud: Provider vs. tenant [USENIX HotCloud’15]



Data analytics over object stores
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Cloud tenants

Google Cloud Storage

Swift

Hadoop to object 
store connectors

Cloud object stores



Cloud object stores heavily rely on 
spinning HDDs
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Google Cloud Storage
Swift



HDD-based object store??

 26

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

60 80 100 120 140 160 180

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

Tenant workload runtime (hour)

HDD only, trace 1

HDD only, trace 2

deadline

HDD pricing in EC2:
$0.0011/GB/day 

Trace 1: 12TB input + 5TB output
Trace 2: 18TB input + 8TB output

Tenants not able to meet deadline 
Provider gets low profit



SSD-based object store??
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HDD pricing in EC2:
$0.0011/GB/day 

Trace 1: 12TB input + 5TB output
Trace 2: 18TB input + 8TB output

SSD-based object store helps meet workload deadline 
for tenants while increasing profit for provider
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SSD-based object store??
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HDD pricing in EC2:
$0.0011/GB/day 

Trace 1: 12B input + 5TB output
Trace 2: 18B input + 8TB output

SSD-based object store helps meet workload deadline 
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0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

60 80 100 120 140 160 180

N
or

m
al

iz
ed

 c
lo

ud
 p

ro
fit

Tenant workload runtime (hour)

HDD only, trace 1

HDD only, trace 2

deadline

SSD only, trace 1

SSD only, trace 2

SSD pricing in EC2:
$0.0044/GB/day Unfortunately, 100% SSD deployment across DC may 

not be viable!



A hybrid object store??
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More options in a hybrid setup
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Read latency

$/GBlow high
low

high
HDDs

Slow/fast RPMs

NAND SSDs
SATA, PCIe, … 

NVMs
PCM, PPAM, … 



More options in a hybrid setup
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Read latency

$/GBlow high
low

high
HDDs

Slow/fast RPMs

NAND SSDs
SATA, PCIe, … 

NVMs
PCM, PPAM, … 

Performance/
endurance tradeoff 



A dynamic pricing model
• Two objectives 

• Objective 1: to balance the increasing profit and SSD 
wearout rate 

• Objective 2: to provide incentivizing mechanism to 
tenants
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A dynamic pricing model
• Dynamic pricing engages both provider and 

tenants in a pricing game 
• Objectives of provider and tenants are essentially 

conflicting!
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The leader/follower game
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Provider leader Tenant follower

SSD price p(n,ssd )

Writes on SSD w(n,ssd )

Time slot n+1

Step 2: Make 
tiering decision 
based on 
requirement

Step 1: Make price 
decision

Fraction of  SSD used f(n,ssd )

Time slot n



Impact of different SSD pricing
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Case study summary
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Dynamic pricing in AWS EC2
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Instance type Cost Spin-up Termination

Reserved High upfront, 
Low per hour Deterministic Non-preemptible

On-demand No upfront, 
High per hour May fail Non-preemptible

Spot No upfront, 
Low per hour May fail Preemptible



Total cost of ownership (TCO)
• TCO = capital (CapEx) + operational (OpEx) expenses 

• Provider’s perspective 
• CapEx: building, generators, cooling, compute/storage/network 

hardware (including spares, amortized over 3—15 years) 
• OpEx: electricity (5—7c/KWh), repairs, people, WAN, 

insurance, …  

• Tenant’s perspective 
• CapEx: cost of long term leases on hardware and services 

• OpEx: pay per use cost on hardware and services, people

 38



Provider’s TCO breakdown
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Hardware dominates TCO, make it cheap 
Must utilize it as efficiently as possible 



Warehouse-scale datacenter 
management
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Datacenter underutilization has been 
a notoriously persistent problem

 41

1: C. Delimitrou et al., Quasar: Resource-Efficient and QoS-Aware Cluster Management [ACM ASPLOS’14] 
2: L. A. Barroso, U. Holzle: The Datacenter as a Computer, 2013



Alibaba datacenter utilization
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*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]



Alibaba datacenter utilization
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> 80% time running b/w 
10-30% CPU usage

> 50% memory usage  
for over 55% time

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]



Alibaba datacenter util heatmap
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CPU usage Memory usage

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]



Alibaba datacenter util heatmap
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CPU usage Memory usage

Medium usage for  
the 1st 4 hours

> 50% for  
majority of time

*: Characterizing Co-located Datacenter Workloads: An Alibaba Case Study [ACM APSys’18]



Datacenter reliability
• Failure in time (FIT) 

• Failures per billion hours of operation = 109 /MTTF 

• Mean time to failure (MTTF) 
• Time to produce first incorrect output 

• Mean time to repair (MTTR) 
• Time to detect and repair a failure
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Service availability
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MTTF MTTR MTTF MTTR

Correct Failure FailureCorrect

Steady state availability = MTTF / (MTTF+MTTR)

Correct



Yearly datacenter flakiness
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~20 rack failures (40–80 machines instantly disappear, 1–6 hours to get back) 
~5 racks go wonky (40–80 machines see 50% packet loss) 
~3 router failures (have to immediately pull traffic for an hour) 
~1000 individual machine failures (2—4% failure rate, machines crash at least 
twice) 
~thousands of hard drive failures (1—5% of all disks will die)

* Picture credit: Gunawi et al., Why does the cloud stop computing? [ACM SoCC’16]



Key availability techniques
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Technique Performance Availability

Replication √ √

Partitioning (sharding) √ √

Load balancing √

Watchdog timers √

Integrity checks √

Eventual consistency √ √

Make apps do something reasonable when not all is right 
Better to give users limited functionality than an error page



Example: AWS S3 outage (Feb 2017)
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The CAP theorem
• In distributed systems, choose 2 out of 3 

• Consistency: Every read returns data from most recent 
writes 

• Availability: Every request executes & receives a (non-
error) response 

• Partition-tolerance: The system continues to function 
when network partitions occur (messages dropped or 
delayed)

 51



Why is Consistency important?
• Consistency = All nodes see the same data at any 

time, or reads return latest written value by any 
client 

• Take multi-client bank account for example 
• You want the updates done from one client to be visible 

to other clients 

• When thousands of customers are looking to book 
a flight, all updates from any client (e.g., book a 
flight) should be accessible by other clients 
• Rather than mistakenly overbooking the same seat 

three times (eventual consistency)
 52



Why is Availability important?
• Availability = Reads/writes complete reliably and 

quickly 
• Measurements have shown that a 500 ms increase in 

latency for operations at amazon.com or at 
google.com can cause a 20% drop in revenue 

• At Amazon, each added millisecond (ms) of latency 
implies a $6M yearly loss 

• SLAs (Service-Level Agreement) written by providers 
predominantly deal with:  
• Availability percentages (X nines): 99.99% “four nines” 
• Latencies faced by clients
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http://amazon.com
http://google.com
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*: https://cloudiqtech.com/aws-sla-summary/



Why is Partition-tolerance important?
• Partitions can happen across datacenters when the 

Internet gets disconnected 
• Internet router outages 
• Under-sea cables cut 
• DNS not working 

• Partitions can also occur within a datacenter 
• E.g., a rack switch outage 

• Still desire system to continue functioning normally 
under this scenario

 55



The CAP theorem fallout
• Since partition-tolerance is essential in today’s 

cloud computing systems, CAP theorem implies 
that a system has to choose between consistency 
and availability 

• Cassandra: Eventual (weak) consistency, 
availability, and partition-tolerance 

• Traditional RDBMSs (relational database 
management systems): Strong consistency over 
availability under a network partitioning

 56



Replicated distributed storage
• A distributed storage system that partitions the 

whole namespace into shards 
• Each shard is replicated N times for fault tolerance and 

performance 

• How close does the distributed storage system 
emulate a single machine in terms of read and 
write semantics?

 57



Key-value stores
• RDBMS provide ACID guarantee of a transaction 

• Atomicity 
• Consistency
• Isolation 
• Durability 

• Key-value stores like Cassandra provide BASE 
• Basically Available Soft-state Eventual Consistency 
• Prefers Availability over Consistency

 58



Consistency models

 59

*: Incremental consistency guarantees for replicated objects [USENIX OSDI’16]



(Strong) Consistency
• Strong consistency (client-perceived) 

• Linearizability: Each update (successful) by a client is visible 
(or available) instantaneously to all other clients 

• Sequential consistency [Lamport] 
• “… the result of any execution is the same as if the 

operations of all the processors were executed in some 
sequential order, and the operations of each individual 

processor appear in this sequence in the order specified by 
its program”

• After the fact, find a “reasonable” ordering of the operations (can 
re-order operations) that obeys sanity (consistency) at all clients, 
and across clients 

• Sequantial = Linearizability - real-time ordering
 60



Consistency models

 61

*: Incremental consistency guarantees for replicated objects [USENIX OSDI’16]



Telephone intuition
1. Alice updates Facebook post 

2. Alice calls Bob on phone: “Hey check my 
Facebook post!” 

3. Bob reads Alice’s wall, sees her post

 62



Strong consistency?

 63

R1

R2

R3

write(A,1)

success

read(A)
1

Phone call: Ensures happens-before relationship, even 
though “out-of-band” communication



Strong consistency? This is buggy!
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R1

R2

R3

write(A,1)

success

read(A)
1

Isn’t sufficient to return value of third replica: It does not 
know precisely when op is globally committed

committed



Strong consistency
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R1

R2

R3

write(A,1)

success

read(A)
1

Instead, need to actually order all operations via:  
(1) leader, (2) consensus

leader



Server-side consistency
• How system understands consistency internally 

under the hood 
• Quorums

• N: The number of nodes that store a replica of data 
• W: The number of replicas that need to 

acknowledge the receipt of the update before the 
update completes 

• R: The number of replicas that are contacted when 
a data object is accessed through a read operation
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Strong consistency with Quorum
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R1

R2

R3

write(A,1)

success

read(A)
1committed

Transaction 
coordination 

within W 
quorum

N: 3 replicas of a data 
W: 3 replicas ack before write commits 
R: 1 replica needs to be contacted for a read



Strong consistency with Quorum
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R1

R2

R3

write(A,1)

success

read(A)
1committed

Transaction 
coordination 

within W 
quorum

Understanding strong consistency: No matter on which 
replica the read op is performed, the outcome will be the 

same as it was read by any replica



Eventual consistency
• Eventual consistency (client-perceived) 

• The storage system guarantees that if no new updates are made 
to the object, eventually (after the inconsistency window closes) 
all accesses will return the last updated value 

• If writes continue, then system always tries to keep 
converging 
• May still return stale values to clients (e.g., if many back-to-back 

writes) 

• But works well when there are a few periods of low writes 
• System converges quickly (eventually)
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Telephone intuition
1. Alice updates Facebook post 

2. Alice calls Bob on phone: “Hey check my 
Facebook post!” 

3. Bob reads Alice’s wall, but does not see her post 

4. Bob refreshes Alice’s wall, and eventually sees her 
post
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Eventual consistency
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R1

R2

R3

write(A,1)

success

read(A)
&*$#

N: 3 replicas of a data 
W: 1 replica ack before write commits 
R: 1 replica needs to be contacted for a read



Eventual consistency
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R1

R2

R3

write(A,1)

success

read(A)
&*$#

Inconsistency window

Bob sees stale data within the inconsistency window



Eventual consistency
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R1

R2

R3

write(A,1)

success

read(A)
&*$#

Inconsistency window

Bob sees updated data eventually

read(A)
1



Consistency models
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*: Incremental consistency guarantees for replicated objects [USENIX OSDI’16]



Causal consistency
• Reads must respect partial order based on 

information flow 

• If Client 1 has communicated to Client 2 that it has 
updated a data item, a subsequent access of Client 2 
will return the updated value and a write is guaranteed 
to supersede the earlier write 

• Access by Client 3 that has no causal relationship to 
Client 1 is subject to the normal eventual consistency 
rules
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Causal consistency example
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Client 1

Client 2

Client 3

write(k1,33)

read(k1)  return 33

write(k2,44)

read(k2)  return 44write(k1,22) read(k1)  
may return 22 or 33

read(k1)  
must return 33

Causality, not messages



Announcement
• Homework assignment #1 is out  

• Due by end of Sep 14 

• Paper presentations will start from Week 4  

• Next class 
• Replicated storage system implementation 
• Distributed consensus 
• Read the papers on website for next class (Sep 12)
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Homework assignment 1
• Build a consistent cloud object store service atop eventually 

consistent S3 
• Leverage a consistent anchor (etcd)  
• python-etcd provides distributed locking APIs and key-value APIs 

using the backend Raft-enabled strongly consistent etcd key-value 
store 

• Core idea: leverage S3’s versioning support 
• Enable versioning at the bucket level 

• Puts store the latest version ID at etcd (metadata server) 
• Gets fetch the latest version ID and then read from S3, ignores object 

with stale version ID, until the version ID matches with what has been 
read from etcd 

• Get/Put/CreateBucket have to be protected using locks (etcd as a 
lock server)
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Homework assignment 1
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Homework assignment 1

 80

Deploy etcd microservice

Implement Get/Put/CreateBucket APIs


