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Announcements
• Paper presentation schedule is out on course 

website 
• Please sign-up for the paper scribes
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Distributed key-value (KV) stores
• Interface 

• put(key, value); // insert/write “value” assoc. with “key”
• value = get(key); // get/read data assoc. with “key”

• Abstraction used to implement 
• File systems: value content —> block 
• Sometimes as a simpler but more scalable “database” 

• Can handle large volumes of data, e.g., PBs 
• Need to distribute data over hundreds, even thousands 

of machines

 3



KV examples
• Amazon 

• Key: CustomerID 
• Value: Customer profile (e.g., buying history, credit card, etc.) 

• Facebook, Twitter 
• Key: UserID 

• Value: User profile (e.g., posting history, photos, friends, etc.) 

• iCloud/iTunes: 
• Key: Movie/song name 
• Value: Movie, Song file 

• Distributed file systems 
• Key: BlockID 

• Value: Block
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KV storage system examples
• Google File Systems (GFS), Hadoop Distributed File System 

(HDFS)

• Amazon  
• Dynamo: distributed KV store used to power the shopping cart in 

amazon.com  

• Simple Storage Service (S3) 

• Bigtable/HBase: distributed NoSQL data store 

• Memcached/Redis: distributed in-memory KV stores for small 
values (arbitrary strings)
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Data partitioning (sharding)
• Main idea: partition set of key-value data across 

many machines to form a scale-out data storage 
cluster
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Data partitioning (sharding)
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key value

…Shard 1 Shard 2 Shard 3 Shard N

• Main idea: partition set of key-value data across 
many machines to form a scale-out data storage 
cluster 

• Each shard is replicated 
• For fault tolerance & performance



Desired properties of a replicated KV 
store?

• Scalability: Horizontal scalability
• Need to scale to thousands of machines 

• Need to allow easy addition of new machines 

• Consistency: Maintain data consistency in face of 
node failures and message losses 

• Fault tolerance: Handle machine failures without 
losing data and without degradation in performance
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Key questions of implementation
• put(key, value): where does the system store a new 

key-value tuple? 
• get(key): how does the system route the read 

request with a given “key”? 

• And, do the above while providing: 
• Scalability 
• Consistency 
• Fault tolerance
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Case study: BespoKV*
• BespoKV is a versatile distributed key-value store 

that decouples the control and data plane: 
• To support configurable data consistency, network 

topology, and fault tolerance 

• To support configurable backend data structures (how 
data is organized in storage medium) 

• Programmable controlets: responsible for distributed 
system management 

• Pluggable datalets: responsible for managing local 
data storage

 10*: BespoKV: Application Tailored Scale-out Key-Value Stores [IEEE SC ’18]



Configurable consistency levels & 
network topologies

• Consistency levels: Strong consistency (SC) / 
eventual consistency (EC) 

• Network topologies: Master-slave (MS) / active-
active (AA)
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BespoKV overview
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BespoKV’s 2D architecture
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BespoKV’s 2D architecture
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BespoKV’s 2D architecture
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BespoKV’s 2D architecture
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BespoKV API
• Datalet API: provided by datalet app developers 

• put(key, value) 

• value = get(key) 

• delete(key) 

• Client API: provided by BespoKV 
• createTable(T) 

• put(key, value, T) 

• value = get(key, T) 

• delete(key, T) 

• deleteTable(T)
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Supporting SC+MS
• Based on chain replication*
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Supporting SC+MS
• Based on chain replication*
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Chain replication*

• Writes to head, which orders all writes 
• When write reaches tail, implicitly committed rest of chain 
• Reads to tail, which orders reads w.r.t. committed writes 
• Replies to both writes/reads from tail
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*: Chain replication for supporting high throughput and availability [USENIX OSDI ’04]



Chain replication for read-heavy* 
(CRAQ)

• Goal: If all replicas have same version, read from any one 
• Challenge: They need to know they have correct version
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*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]
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Chain replication for read-heavy* 
(CRAQ)

• Replicas maintain multiple versions of objects while 
“dirty”, i.e., contain uncommitted writes 

• Commitment sent “up” chain after reaches tail
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Chain replication for read-heavy* 
(CRAQ)

• Reads to dirty object must check with tail for proper version 
• This orders read with respect to global order, regardless of 

replica that handles
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Head replica replica Tail

*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]
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Chain replication for read-heavy* 
(CRAQ)

 24*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]



Supporting SC+AA
• Leverage a distributed lock server
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Supporting EC+MS
• Asynchronous writes to slave replicas
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Supporting EC+MS
• Asynchronous writes to slave replicas
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Supporting EC+AA
• Leverage a distributed message queue for multi-

master asynchronous writes
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Supporting EC+AA
• Leverage a distributed message queue for multi-

master asynchronous writes
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Horizontal scalability on GCP

• Workloads: Yahoo! Cloud Service Benchmark 
• Each shard has 3 replicas 
• Google cloud platform: scaled from 3 VMs to 48 VMs
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Data engine flexibility: 
Varying backend datalets
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• Each shard has 3 replicas 
• Google cloud platform: scaled from 3 VMs to 48 VMs



Service flexibility: 
Online reconfigurability
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Performance comparison
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Consensus
• Definition 

• A general agreement about something 
• An idea or opinion that is shared by all the people in a 

group

 34



Distributed consensus algorithms
• Consensus of a set of processes (i.e., a distributed 

system) 
• Termination: All non-faulty processes eventually 

decide on a value 
• Agreement: All processes that decide to do so on the 

same value 
• Validity: The value that has been decided must have 

proposed by some process
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Assumptions
• Failure models 

• Fail-stop 
• Fail-recover 

• Asynchronous distributed systems 
• Delayed/dropped messages 
• No upper bound on clock drift rate 
• No synchronization among processes

 36



Consensus used in systems
• Deciding whether or not to commit a transaction to 

a database 
• Synchronizing clocks by agreeing on the current 

time 
• Making sure all servers in group receive the same 

commands (or data) in the same order as each 
other  
• The famous replicated state machine approach 

• Electing a leader node to coordinate some higher-
level protocol

 37



Two-phase commit (2PC)

• Simple and natural: two phases 
1. Propose: Contact every participant, suggest a value and 

gather their responses 

2. Commit: If everyone agrees, contact every participant again 
to let them know. Otherwise, contact every participant to abort 
the consensus  38
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Two-phase commit (2PC)

• If the proposal was not accepted by any one of the 
voters, the proposal will not be committed (aborted) 

• Voters{1,2,3} are still in consensus
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Crashes and failures in 2PC

• 2PC is not able to handle fail-stop failure 
• Coordinator and voter3 both crash during Commit phase 
• Voter1 and voter2 fall in a dilemma where they cannot decide whether: 

• Voter3 has agreed (in Propose phase) and committed 

• -OR- disagreed (in Propose phase)  40
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Three-phase commit (3PC)

• 3PC further breaks the “Commit phase” of 2PC into two sub-phases 
1. Prepare-to-commit: Every participant gets to know the voting result 

without commitment (so that they can get prepared to commit…) 

2. Commit: If everyone agrees & is willing to commit, contact every 
participant again to let them know. Otherwise, contact every participant 
to abort the consensus  41
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Crashes and failures in 3PC
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One step further: Paxos
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Goal of Paxos in practice

• Replicated log —> replicated state machine 
• All servers execute the same commands in same order 

• Consensus module ensures proper log replication 
• System makes progress as long as any majority of servers are up 
• Failure model: fail-stop (not Byzantine), delayed/lost messages

 44Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Requirements for basic Paxos
• Safety

• Only one value that has been proposed may be chosen 
• If a value is chosen by a process, then the same value must 

be chosen by any other process that has chosen a value 

• Liveness (as long as majority of servers are up and 
communicating with reasonable timeliness
• Some proposed value is eventually chosen and, if a value 

has been chosen, then a process can eventually learn the 
value

 45

“… it is among the simplest and most obvious of 
distributed algorithms…”  — Leslie Lamport



The Paxos algorithm
• Contribution: Separately consider safety and 

liveness issues 
• Safety can be guaranteed (consensus is not violated) 
• Liveness is ensured during period of synchrony: If 

things go well sometime in the future (messages, 
failures, etc.), there is a good chance consensus will be 
reached (eventually)
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Paxos components
• Proposers

• Active: put forth particular values to be chosen 

• Handle client requests 

• Acceptors
• Passive: response to messages from proposers 

• Responses represent votes that form consensus 

• Store chosen value, state of the decision process 

• Want to know which value was chosen 

• Assumption
• Each Paxos server contains both components
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Proposal numbers
• Each proposal has a unique number 

• Higher numbers take priority over lower numbers 
• It must be possible for a proposer to choose a new proposal 

number higher than anything it has seen/used before 

• One simple approach 

• Each server stores maxRound: the largest Round Number it has 
seen so far 

• To generate a new proposal number:  
• Increment maxRound 

• Concatenate with Server ID 

• Proposers must persist maxRound on disk: must not reuse 
proposal numbers after crash/restart  48

Round number Server ID
Proposal Number



Basic Paxos
• Two-phase approach

• Phase 1: Broadcast Prepare RPCs
• Find out about any chosen values 

• Reject older proposals that have not yet completed 

• Phase 2: Broadcast Accept RPCs
• Ask acceptors to accept a specific value

 49



Basic Paxos

 50

Acceptors must record minProposal, acceptedProposal, and 
acceptedValue on stable storage (disk)

Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Basic Paxos examples
• What if previous value is already chosen 

• New proposer will find it and use it

 51Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Basic Paxos examples
• What if previous value has not been chosen but new 

proposer sees it 
• New proposer will use existing value 
• Both proposers can succeed

 52Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Basic Paxos examples
• What if previous value has not been chosen but new 

proposer doesn’t see it 
• New proposer chooses its own value 
• Older proposal rejected

 53Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Liveness
• Competing proposers can livelock 

• One solution: randomized delay before 
restarting
• Give other proposers a chance to finish choosing

 54Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Announcements
• Next class: paper presentations and discussions 

• Raft    +    Zookeeper 

• Make sure to fill out the paper evaluation form 
(Google form closes 10 min before class) 

• Scribe report on Piazza due by end of next day 
(Thursday)
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