
CS 795: Distributed Systems
& Cloud Computing

Fall 2018

Lec 2: Distributed storage implementation
& Consensus algorithms

Yue Cheng

Announcements
• Paper presentation schedule is out on course

website
• Please sign-up for the paper scribes

 2

Distributed key-value (KV) stores
• Interface

• put(key, value); // insert/write “value” assoc. with “key”
• value = get(key); // get/read data assoc. with “key”

• Abstraction used to implement
• File systems: value content —> block
• Sometimes as a simpler but more scalable “database”

• Can handle large volumes of data, e.g., PBs
• Need to distribute data over hundreds, even thousands

of machines

 3

KV examples
• Amazon

• Key: CustomerID
• Value: Customer profile (e.g., buying history, credit card, etc.)

• Facebook, Twitter
• Key: UserID

• Value: User profile (e.g., posting history, photos, friends, etc.)

• iCloud/iTunes:
• Key: Movie/song name
• Value: Movie, Song file

• Distributed file systems
• Key: BlockID

• Value: Block

 4

KV storage system examples
• Google File Systems (GFS), Hadoop Distributed File System

(HDFS)

• Amazon
• Dynamo: distributed KV store used to power the shopping cart in

amazon.com

• Simple Storage Service (S3)

• Bigtable/HBase: distributed NoSQL data store

• Memcached/Redis: distributed in-memory KV stores for small
values (arbitrary strings)

 5

http://amazon.com

Data partitioning (sharding)
• Main idea: partition set of key-value data across

many machines to form a scale-out data storage
cluster

 6

key value

…
Shard 1 Shard 2 Shard 3 Shard N

Data partitioning (sharding)

 7

key value

…Shard 1 Shard 2 Shard 3 Shard N

• Main idea: partition set of key-value data across
many machines to form a scale-out data storage
cluster

• Each shard is replicated
• For fault tolerance & performance

Desired properties of a replicated KV
store?

• Scalability: Horizontal scalability
• Need to scale to thousands of machines

• Need to allow easy addition of new machines

• Consistency: Maintain data consistency in face of
node failures and message losses

• Fault tolerance: Handle machine failures without
losing data and without degradation in performance

 8

Key questions of implementation
• put(key, value): where does the system store a new

key-value tuple?
• get(key): how does the system route the read

request with a given “key”?

• And, do the above while providing:
• Scalability
• Consistency
• Fault tolerance

 9

Case study: BespoKV*
• BespoKV is a versatile distributed key-value store

that decouples the control and data plane:
• To support configurable data consistency, network

topology, and fault tolerance

• To support configurable backend data structures (how
data is organized in storage medium)

• Programmable controlets: responsible for distributed
system management

• Pluggable datalets: responsible for managing local
data storage

 10*: BespoKV: Application Tailored Scale-out Key-Value Stores [IEEE SC ’18]

Configurable consistency levels &
network topologies

• Consistency levels: Strong consistency (SC) /
eventual consistency (EC)

• Network topologies: Master-slave (MS) / active-
active (AA)

 11

R1 R2 R3

Master Slave1 Slave2

Put

R1 R2 R3

Put Put Put

Master-slave Active-active

Master1 Master2 Master3

BespoKV overview

 12

Client app
BESPOKV lib

…Client app
BESPOKV lib

Client app
BESPOKV lib

Storage Storage Storage

BESPOKV control plane

Network

Coordinator

Controlet
Proto parser

Controlet
Proto parser

Controlet
Proto parser

 BESPOKV data plane
Datalet Datalet Datalet…

Shared Log

DLM

! !

Metadata

Optional
Components

BespoKV’s 2D architecture

 13

Client app
BESPOKV lib

…Client app
BESPOKV lib

Client app
BESPOKV lib

Storage Storage Storage

BESPOKV control plane

Network

Coordinator

Controlet
Proto parser

Controlet
Proto parser

Controlet
Proto parser

 BESPOKV data plane
Datalet Datalet Datalet…

Shared Log

DLM

! !

Metadata

Optional
Components

Control plane

Data plane

BespoKV’s 2D architecture

 14

Client app
BESPOKV lib

…Client app
BESPOKV lib

Client app
BESPOKV lib

Storage Storage Storage

BESPOKV control plane

Network

Coordinator

Controlet
Proto parser

Controlet
Proto parser

Controlet
Proto parser

 BESPOKV data plane
Datalet Datalet Datalet…

Shared Log

DLM

! !

Metadata

Optional
Components

Replication Consistency

Topology Recovery

BESPOKV controlet

Control plane

Data plane

BespoKV’s 2D architecture

 15

Client app
BESPOKV lib

…Client app
BESPOKV lib

Client app
BESPOKV lib

Storage Storage Storage

BESPOKV control plane

Network

Coordinator

Controlet
Proto parser

Controlet
Proto parser

Controlet
Proto parser

 BESPOKV data plane
Datalet Datalet Datalet…

Shared Log

DLM

! !

Metadata

Optional
Components

Replication Consistency

Topology Recovery

BESPOKV controlet

BESPOKV datalet engines
Hash table LSM Tree …

Memory HDD/SSD

Control plane

Data plane

BespoKV’s 2D architecture

 16

Client app
BESPOKV lib

…Client app
BESPOKV lib

Client app
BESPOKV lib

Storage Storage Storage

BESPOKV control plane

Network

Coordinator

Controlet
Proto parser

Controlet
Proto parser

Controlet
Proto parser

 BESPOKV data plane
Datalet Datalet Datalet…

Shared Log

DLM

! !

Metadata

Optional
Components

Replication Consistency

Topology Recovery

BESPOKV controlet

BESPOKV datalet engines
Hash table LSM Tree …

Memory HDD/SSD

Control plane

Data plane

...

BespoKV API
• Datalet API: provided by datalet app developers

• put(key, value)

• value = get(key)

• delete(key)

• Client API: provided by BespoKV
• createTable(T)

• put(key, value, T)

• value = get(key, T)

• delete(key, T)

• deleteTable(T)

 17

Supporting SC+MS
• Based on chain replication*

 18

Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

Head Tail

1. put(key,val)

2. putHead(key,val);
3. putMid(key,val);
4. putTail(key,val);
5. Ack; Ack6. Ack

Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

Head Tail

1. get(key) 3. Ack(val)

1. getD(key)

Put path

Get path

Mid

Mid

MS+SC

*: Chain replication for supporting high throughput and availability [USENIX OSDI 04]

Supporting SC+MS
• Based on chain replication*

 19

Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

Head Tail

1. put(key,val)

2. putHead(key,val);
3. putMid(key,val);
4. putTail(key,val);
5. Ack; Ack6. Ack

Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

Head Tail

1. get(key) 3. Ack(val)

1. getD(key)

Put path

Get path

Mid

Mid

MS+SC

*: Chain replication for supporting high throughput and availability [USENIX OSDI ’04]

Chain replication*

• Writes to head, which orders all writes
• When write reaches tail, implicitly committed rest of chain
• Reads to tail, which orders reads w.r.t. committed writes
• Replies to both writes/reads from tail

 20

Head replica replica Tail

Write requests Read requests Replies

*: Chain replication for supporting high throughput and availability [USENIX OSDI ’04]

Chain replication for read-heavy*
(CRAQ)

• Goal: If all replicas have same version, read from any one
• Challenge: They need to know they have correct version

 21

Head replica replica Tail

*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]

Read requestsRead requestsRead requestsRead requests

Chain replication for read-heavy*
(CRAQ)

• Replicas maintain multiple versions of objects while
“dirty”, i.e., contain uncommitted writes

• Commitment sent “up” chain after reaches tail

 22

Head replica replica Tail

*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]

Clean readWrite request
[k, v2]

k, v1, v2 k, v1, v2 k, v1 k, v1

k v1

Chain replication for read-heavy*
(CRAQ)

• Reads to dirty object must check with tail for proper version
• This orders read with respect to global order, regardless of

replica that handles

 23

Head replica replica Tail

*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]

Clean readWrite request
[k, v2]

k, v1, v2 k, v1, v2 k, v1 k, v1

k v1

Dirty read
k v1

k

VersionID = 1

Chain replication for read-heavy*
(CRAQ)

 24*: Object storage on CRAQ: High-throughput chain replication for read-mostly workloads [USENIX ATC ‘09]

Supporting SC+AA
• Leverage a distributed lock server

 25

Client app 1

Controlet D/M1 Controlet D/M2

Coordinator

1. put(key,val1) 8. Ack

Put path

Client app 2

2. put(key,val2) 14. Ack

12. putM2(key,val2)
5. putM2(key,val1)

Lock server

11. putM1(key,val2)

3. lock(key)

9. lock(key)
6. putM1(key,val1)

4. putM2(key,val1)

7. unlock(key)

13. unlock(key)10. putM1(key,val2)

Supporting EC+MS
• Asynchronous writes to slave replicas

 26

Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

1. put(key,val) 4. Ack

Client app 1

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

3b. Ack(val)

2b. getD(key)

Put path

Get path

3. putD(key,val)

5. asyncPutS1/S2(key,val)

Client app 2

1b. get(key)

2a. getD(key)

1a. get(key) 3a. Ack(val)

Supporting EC+MS
• Asynchronous writes to slave replicas

 27

Client app

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

1. put(key,val) 4. Ack

Client app 1

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

3b. Ack(val)

2b. getD(key)

Put path

Get path

3. putD(key,val)

5. asyncPutS1/S2(key,val)

Client app 2

1b. get(key)

2a. getD(key)

1a. get(key) 3a. Ack(val)

Supporting EC+AA
• Leverage a distributed message queue for multi-

master asynchronous writes

 28

Client app 1

Controlet D/M1 Controlet D/M2 Contorlet D/M3

MQ Coordinator

1a. put(key,val1) 4a. Ack

Client app 1

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

3b. Ack(val)

2b. getD(key)

Put path

Get path

3a. putD(key,val1)

Client app 2

1b. get(key)

2a. getD(key)

1a. get(key) 3a. Ack(val)

Client app 2

1b. put(key,val2) 4b. Ack

2. M1/M2/M3.putMQ(key,val)
5. M1/M2/M3.asyncFetch

3b. putD(key,val2)

Supporting EC+AA
• Leverage a distributed message queue for multi-

master asynchronous writes

 29

Client app 1

Controlet D/M1 Controlet D/M2 Contorlet D/M3

MQ Coordinator

1a. put(key,val1) 4a. Ack

Client app 1

Controlet D/M Controlet D/S1 Controlet D/S2

Coordinator

3b. Ack(val)

2b. getD(key)

Put path

Get path

3a. putD(key,val1)

Client app 2

1b. get(key)

2a. getD(key)

1a. get(key) 3a. Ack(val)

Client app 2

1b. put(key,val2) 4b. Ack

2. M1/M2/M3.putMQ(key,val)
5. M1/M2/M3.asyncFetch

3b. putD(key,val2)

Horizontal scalability on GCP

• Workloads: Yahoo! Cloud Service Benchmark
• Each shard has 3 replicas
• Google cloud platform: scaled from 3 VMs to 48 VMs

 30

 0

 200

 400

 600

 800

36 12 24 36 48
nodes

(95% GET)

36 12 24 36 48
nodes

(50% GET)

MS Unif
MS Zipf
AA Unif
AA Zipf

 10

 100

 1000

3612 24 36 48

T
h
ro

u
g
h
p
u
t
(1

0
3
 Q

P
S

)

nodes
(95% GET)

3612 24 36 48
nodes

(50% GET)

Strong consistency Eventual consistency

Data engine flexibility:
Varying backend datalets

 31

 0

 200

 400

 600

 800

 3 6 12 24 48T
h

ro
u

g
h

p
u

t
(1

0
3
 Q

P
S

)

nodes
(a) tSSDB.

 3 6 12 24 48
nodes
(b) tLog.

 3 6 12 24 48
nodes
(c) tMT.

Unif 95% GET
Zipf 95% GET

Unif 50% GET
Zipf 50% GET

Unif 95% SCAN
Zipf 95% SCAN

• Workloads: Yahoo! Cloud Service Benchmark
• Each shard has 3 replicas
• Google cloud platform: scaled from 3 VMs to 48 VMs

Service flexibility:
Online reconfigurability

 32

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35 40

transition starts ends
T

h
ro

u
g

h
p

u
t

(1
0

3
 Q

P
S

)

Time (sec)

MS-EC->MS-SC
MS-EC->AA-EC
MS-EC->AA-SC

• Workloads: Yahoo! Cloud Service Benchmark
• Each shard has 3 replicas
• BespoKV seamlessly adapts service from MS-EC to MS-

SC, AA-EC, and AA-SC

Performance comparison

 33

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 50 100 150 200

L
at

en
cy

 (
m

s)

Throughput (10
3
 QPS)

(b) 50% Get.

MS+SC
MS+EC
AA+SC
AA+EC

Cassandra
Voldemort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250

L
at

en
cy

 (
m

s)

Throughput (10
3
 QPS)

(a) 95% Get.

• Workloads: Yahoo! Cloud Service Benchmark
• Each shard has 3 replicas
• Comparing against Cassandra and Voldemort

Consensus
• Definition

• A general agreement about something
• An idea or opinion that is shared by all the people in a

group

 34

Distributed consensus algorithms
• Consensus of a set of processes (i.e., a distributed

system)
• Termination: All non-faulty processes eventually

decide on a value
• Agreement: All processes that decide to do so on the

same value
• Validity: The value that has been decided must have

proposed by some process

 35

Assumptions
• Failure models

• Fail-stop
• Fail-recover

• Asynchronous distributed systems
• Delayed/dropped messages
• No upper bound on clock drift rate
• No synchronization among processes

 36

Consensus used in systems
• Deciding whether or not to commit a transaction to

a database
• Synchronizing clocks by agreeing on the current

time
• Making sure all servers in group receive the same

commands (or data) in the same order as each
other
• The famous replicated state machine approach

• Electing a leader node to coordinate some higher-
level protocol

 37

Two-phase commit (2PC)

• Simple and natural: two phases
1. Propose: Contact every participant, suggest a value and

gather their responses

2. Commit: If everyone agrees, contact every participant again
to let them know. Otherwise, contact every participant to abort
the consensus 38

Coordinator

voter1

voter2

voter3

Propose
value

agree

agree

agree

Propose phase Commit phase

Commit
value

committed

committed

committed

commit

commit

commit

Two-phase commit (2PC)

• If the proposal was not accepted by any one of the
voters, the proposal will not be committed (aborted)

• Voters{1,2,3} are still in consensus

 39

Coordinator

voter1

voter2

voter3

Propose
value

agree

agree

Propose phase Commit phase

Abort

aborted

aborted

abort

abort

abort

disagree

aborted

Crashes and failures in 2PC

• 2PC is not able to handle fail-stop failure
• Coordinator and voter3 both crash during Commit phase
• Voter1 and voter2 fall in a dilemma where they cannot decide whether:

• Voter3 has agreed (in Propose phase) and committed

• -OR- disagreed (in Propose phase) 40

Coordinator

voter1

voter2

voter3

Propose
value

agree

agree

agree

Propose phase Commit phase

Commit
value

Crash: fail-stop

???

???

commit?

Is this message sent
& received at all?

Crash: fail-stop

X

X

Three-phase commit (3PC)

• 3PC further breaks the “Commit phase” of 2PC into two sub-phases
1. Prepare-to-commit: Every participant gets to know the voting result

without commitment (so that they can get prepared to commit…)

2. Commit: If everyone agrees & is willing to commit, contact every
participant again to let them know. Otherwise, contact every participant
to abort the consensus 41

Coordinator

voter1

voter2

voter3

Propose
value

agree

agree

agree

Propose phase Commit phase

Pre-
commit

committed

committed

committed

commit

commit

commit

Pre-commit phase

OK

OK

OK

Crashes and failures in 3PC

 42

Coordinator

voter1

voter2

voter3

Propose
value

agree

agree

agree

Propose phase Commit phase

Pre-
commit

committed

aborted

committed

commit

commit

abort

Pre-commit phase

• 3PC is not able to handle network partition
• At Prepare-to-commit phase, network partition

occurs, voter1 and voter2 will do something
opposite than voter3 (who is on the other side of
the partitioned network)

Network partition

One step further: Paxos

 43

Goal of Paxos in practice

• Replicated log —> replicated state machine
• All servers execute the same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up
• Failure model: fail-stop (not Byzantine), delayed/lost messages

 44Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos

Requirements for basic Paxos
• Safety

• Only one value that has been proposed may be chosen
• If a value is chosen by a process, then the same value must

be chosen by any other process that has chosen a value

• Liveness (as long as majority of servers are up and
communicating with reasonable timeliness
• Some proposed value is eventually chosen and, if a value

has been chosen, then a process can eventually learn the
value

 45

“… it is among the simplest and most obvious of
distributed algorithms…” — Leslie Lamport

The Paxos algorithm
• Contribution: Separately consider safety and

liveness issues
• Safety can be guaranteed (consensus is not violated)
• Liveness is ensured during period of synchrony: If

things go well sometime in the future (messages,
failures, etc.), there is a good chance consensus will be
reached (eventually)

 46

Paxos components
• Proposers

• Active: put forth particular values to be chosen

• Handle client requests

• Acceptors
• Passive: response to messages from proposers

• Responses represent votes that form consensus

• Store chosen value, state of the decision process

• Want to know which value was chosen

• Assumption
• Each Paxos server contains both components

 47

Proposal numbers
• Each proposal has a unique number

• Higher numbers take priority over lower numbers
• It must be possible for a proposer to choose a new proposal

number higher than anything it has seen/used before

• One simple approach

• Each server stores maxRound: the largest Round Number it has
seen so far

• To generate a new proposal number:
• Increment maxRound

• Concatenate with Server ID

• Proposers must persist maxRound on disk: must not reuse
proposal numbers after crash/restart 48

Round number Server ID
Proposal Number

Basic Paxos
• Two-phase approach

• Phase 1: Broadcast Prepare RPCs
• Find out about any chosen values

• Reject older proposals that have not yet completed

• Phase 2: Broadcast Accept RPCs
• Ask acceptors to accept a specific value

 49

Basic Paxos

 50

Acceptors must record minProposal, acceptedProposal, and
acceptedValue on stable storage (disk)

Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos

Basic Paxos examples
• What if previous value is already chosen

• New proposer will find it and use it

 51Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos

Basic Paxos examples
• What if previous value has not been chosen but new

proposer sees it
• New proposer will use existing value
• Both proposers can succeed

 52Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos

Basic Paxos examples
• What if previous value has not been chosen but new

proposer doesn’t see it
• New proposer chooses its own value
• Older proposal rejected

 53Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos

Liveness
• Competing proposers can livelock

• One solution: randomized delay before
restarting
• Give other proposers a chance to finish choosing

 54Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos

Announcements
• Next class: paper presentations and discussions

• Raft + Zookeeper

• Make sure to fill out the paper evaluation form
(Google form closes 10 min before class)

• Scribe report on Piazza due by end of next day
(Thursday)

 55

