
One step further: Paxos

 43



Goal of Paxos in practice

• Replicated log —> replicated state machine 
• All servers execute the same commands in same order 

• Consensus module ensures proper log replication 
• System makes progress as long as any majority of servers are up 
• Failure model: fail-stop (not Byzantine), delayed/lost messages

 44Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Requirements for basic Paxos
• Safety

• Only one value that has been proposed may be chosen 
• If a value is chosen by a process, then the same value must 

be chosen by any other process that has chosen a value 

• Liveness (as long as majority of servers are up and 
communicating with reasonable timeliness
• Some proposed value is eventually chosen and, if a value 

has been chosen, then a process can eventually learn the 
value

 45

“… it is among the simplest and most obvious of 
distributed algorithms…”  — Leslie Lamport



The Paxos algorithm
• Contribution: Separately consider safety and 

liveness issues 
• Safety can be guaranteed (consensus is not violated) 
• Liveness is ensured during period of synchrony: If 

things go well sometime in the future (messages, 
failures, etc.), there is a good chance consensus will be 
reached (eventually)

 46



Paxos components
• Proposers

• Active: put forth particular values to be chosen 
• Handle client requests 

• Acceptors
• Passive: response to messages from proposers 
• Responses represent votes that form consensus 
• Store chosen value, state of the decision process 
• Want to know which value was chosen 

• Assumption
• Each Paxos server contains both components

 47



Proposal numbers
• Each proposal has a unique number 

• Higher numbers take priority over lower numbers 
• It must be possible for a proposer to choose a new proposal 

number higher than anything it has seen/used before 

• One simple approach 

• Each server stores maxRound: the largest Round Number it has 
seen so far 

• To generate a new proposal number:  
• Increment maxRound 

• Concatenate with Server ID 

• Proposers must persist maxRound on disk: must not reuse 
proposal numbers after crash/restart  48

Round number Server ID
Proposal Number



Basic Paxos
• Two-phase approach

• Phase 1: Broadcast Prepare RPCs
• Find out about any chosen values 

• Reject older proposals that have not yet completed 

• Phase 2: Broadcast Accept RPCs
• Ask acceptors to accept a specific value

 49



Basic Paxos

 50

Acceptors must record minProposal, acceptedProposal, and 
acceptedValue on stable storage (disk)

Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Basic Paxos examples
• What if previous value is already chosen 

• New proposer will find it and use it

 51Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Basic Paxos examples
• What if previous value has not been chosen but new 

proposer sees it 
• New proposer will use existing value 
• Both proposers can succeed

 52Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Basic Paxos examples
• What if previous value has not been chosen but new 

proposer doesn’t see it 
• New proposer chooses its own value 
• Older proposal rejected

 53Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Liveness
• Competing proposers can livelock 

• One solution: randomized delay before 
restarting
• Give other proposers a chance to finish choosing

 54Picture credit: Ousterhout and Ongaro, Implementing Replicated Logs with Paxos



Announcements
• Next class: paper presentations and discussions 

• Raft    +    Zookeeper 

• Make sure to fill out the paper evaluation form 
(Google form closes 10 min before class) 

• Scribe report on Piazza due by end of next day 
(Thursday)

 55


