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Agenda
§ GFS/MapReduce primer

§ 5 min break

§ Spark discussion

§ 5 min break

§ Bigtable discussion

§ Project discussion + Q&A
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Google File System
MapReduce
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Google File System (GFS) 
Overview

o Motivation

o Architecture
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GFS
o Goal: a global (distributed) file system that 

stores data across many machines
– Need to handle 100’s TBs

o Google published details in 2003

o Open source implementation: 
– Hadoop Distributed File System (HDFS)
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Workload-driven Design
o Google workload characteristics

– Huge files (GBs)
– Almost all writes are appends
– Concurrent appends common
– High throughput is valuable
– Low latency is not
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Example Workloads
o Read entire dataset, do computation over it

o Producer/consumer: many producers append 
work to file concurrently; one consumer reads 
and does work
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Workload-driven Design
o Build a global (distributed) file system that 

incorporates all these application properties

o Only supports features required by applications

o Avoid difficult local file system features, e.g.:
– rename dir
– links
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Real-world use cases of HDFS
o NetApp provides storage solution to 

businesses/companies
o Large financial firm: 60 PB of raw data
o Requires 1200 HDFS storage nodes organized 

as a data lake
– Includes 3x replicas + overprovisioned space for 

failures etc.
– 288 TB disk capacity per HDFS node (storage dense 

configuration)
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Google File System (GFS) 
Overview

o Motivation

o Architecture
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Replication
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Replication
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C

Similar to RAID, but less orderly than RAID
• Machines’ capacity may vary
• Different data may have different replication factors



Data Recovery
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Data Recovery
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Data Recovery
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GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA

Replicating A to maintain a replication factor of 2



Data Recovery
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GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Replicating C to maintain a replication factor of 3



Data Recovery
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Machine may be dead forever, or it may come back



Data Recovery
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Data Recovery
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Data Recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C

Data Rebalancing
Deleting one A to maintain a replication factor of 2



Data Recovery
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Data Recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Data Rebalancing
Deleting one C to maintain a replication factor of 3



Data Recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Question: how to maintain a global view of all data
distributed across machines?



GFS Architecture
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GFS Architecture
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Master
[metadata]

Clients GFS Servers
[data]

RPC RPC

RPC
many many

one



GFS Architecture
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Master
[metadata]

Client 1 Client 2 Client 3



Data Chunks
o Break large GFS files into coarse-grained data 

chunks (e.g., 64MB)

o GFS servers store physical data chunks in local 
Linux file system

o Centralized master keeps track of mapping 
between logical and physical chunks
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Chunk Map

31

Master

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…



GFS Server s2
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Master



Client Reads a Chunk

33

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

lookup 924

Master



Client Reads a Chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

s2,s5,s7

Master



Client Reads a Chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

ClientMaster



Client Reads a Chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=0
size=1MB

Master



Client Reads a Chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master



Client Reads a Chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=1MB
size=1MB

Master



Client Reads a Chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master



File Namespace
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

path names mapped to logical names

file namespace:
/foo/bar => 924,813
/var/log => 123,999

Master



Google File System
MapReduce
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MapReduce Overview
o Motivation

o Architecture

o Programming Model
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Problem
o Datasets are too big to process using single 

machine

o Good concurrent processing engines are rare

o Want a concurrent processing framework that is:
– easy to use (no locks, CVs, race conditions)
– general (works for many problems)
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MapReduce
o Strategy: break data into buckets, do 

computation over each bucket

o Google published details in 2004

o Open source implementation: Hadoop
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Example: Word Count

Word Count

was 28

what 129

was 54

what 18

was 32

map 10
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How to quickly sum word counts with
multiple machines concurrently?



Example: Word Count

Word Count

was 28

what 129

was 54

what 18

was 32

map 10
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mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

47

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count
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reducer 1

reducer 2

Reduce was

Reduce what

Reduce map

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count
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reducer 1

reducer 2

was: 114

what: 147

map: 10

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



MapReduce Overview
o Motivation

o Architecture

o Programming Model
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MapReduce Architecture
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Master

Worker Worker Worker

Master node

Worker node 1 Worker node 2 Worker node N

Chunks

Client

Chunks Chunks



MapReduce Architecture
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Master

Worker Worker Worker

Master node

Chunks

Client

Chunks Chunks

GFS layer 
storing data 

chunks

Worker node 1 Worker node 2 Worker node N



MapReduce over GFS
o MapReduce writes and reads data to/from GFS

o MapReduce workers run on same machines as 
GFS server daemons
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GFS
files Mappers Intermediate 

local files Reducers GFS
files



MapReduce Data Flows & 
Executions
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GFS
files Mappers Intermediate 

local files Reducers GFS
files



MapReduce Overview
o Motivation

o Architecture

o Programming Model
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Map/Reduce Function Types
o map(k1, v1) à list(k2, v2)
o reduce(k2, list(v2)) à list(k3, v3)
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Hadoop API
public void map(LongWritable key, Text value) {

// WRITE CODE HERE
}

public void reduce(Text key, Iterator<IntWritable> values) 
{

// WRITE CODE HERE
}
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MapReduce Word Count Pseudo Code

func mapper(key, line) {
for word in line.split()

yield word, 1
}

func reducer(word, occurrences) {
yield word, sum(occurrences)

}
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MapReduce Word Count
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Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts
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MapReduce Word Count
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Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Grep
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Very 
big

data

Split data
Split data
Split data

Split data

grep
grep
grep

grep

matches

matches
matches

matches

cat All
matches



Announcements
o Homework assignment 2 due mid-night this 

Friday (11:59pm Oct 5)

o Project milestone 1: mid-term proposal 
presentation
– Oct 17
– Proposal report due Oct 26
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