CS 795 Distributed Systems

& Cloud Computing
Fall 2018

Lec 5: Big data systems
Yue Cheng

Agenda

GFS/MapReduce primer

= 5 min break

Spark discussion

= 5 min break

Bigtable discussion

Project discussion + Q&A

Google File System
MapReduce

Google File System
MapReduce

Google File System (GFS)
Overview

o Motivation

o Architecture

GFS

o Goal: a global (distributed) file system that
stores data across many machines

— Need to handle 100’s TBs
o Google published details in 2003

o Open source implementation:
— Hadoop Distributed File System (HDFS)

e

Workload-driven Design

o Google workload characteristics
— Huge files (GBs)
— Almost all writes are appends
— Concurrent appends common
— High throughput is valuable
— Low latency is not

Example Workloads

o Read entire dataset, do computation over it

o Producer/consumer: many producers append
work to file concurrently; one consumer reads
and does work

Workload-driven Design

o Build a global (distributed) file system that
iIncorporates all these application properties

o Only supports features required by applications

o Avoid difficult local file system features, e.g.:
— rename dir
— links

Real-world use cases of HDFS

o NetApp provides storage solution to "
businesses/companies

o Large financial firm: 60 PB of raw data NetApp

o Requires 1200 HDFS storage nodes organized
as a data lake

— Includes 3x replicas + overprovisioned space for
failures etc.

— 288 TB disk capacity per HDFS node (storage dense
configuration)

10

Google File System (GFS)
Overview

o Motivation

o Architecture

11

GFS Server 1

Replication

GFS Server 2

GFS Server 1

Replication

GFS Server 2

Replication

a5 senver 1 J] G Semer m w

Similar to RAID, but less orderly than RAID

« Machines’ capacity may vary

« Different data may have different replication factors

14

GFS Server 1

Data Recovery

GFS Server 2

GFS Server 1

Data Recovery

mpo—" *

Data Recovery

* m
\
Replicating A to maintain a replication factor of 2

—

17

Data Recovery

a5 senver 1 J] G Semer * w

Replicating C to maintain a replication factor of 3

18

Data Recovery

m—" *

Machine may be dead forever, or it may come back

GFS Server 1

19

Data Recovery

GFS Server 1

GFS Server 2

Machine may be dead forever, or it may come back

20

GFS Server 1

Data Recovery

GFS Server 2

Data Recovery

a5 senver 1 J] G Semer m w

Data Rebalancing

Deleting one A to maintain a replication factor of 2

22

GFS Server 1

Data Recovery

GFS Server 2

23

Data Recovery

a5 senver 1 J] G Semer m w
LI

Data Rebalancing

Deleting one C to maintain a replication factor of 3

24

Data Recovery

GFS Server 1

GFS Server 2

Question: how to maintain a global view of all data
distributed across machines?

25

GFS Architecture

Master

Clients GFS Servers

26

GFS Architecture

Master

Clients GFS Servers

27

GFS Architecture

Master
[metadata]

Clients GFS Servers
[data]

many many

28

GFS Architecture

=N o .

[metadata]

Data Chunks

o Break large GFS files into coarse-grained data
chunks (e.g., 64MB)

o GFS servers store physical data chunks in local
Linux file system

o Centralized master keeps track of mapping
between logical and physical chunks

30

Master

chunk map

logical

s2,85,s7
s2,59,s11

Chunk Map

31

GFS Server s2

Master GFS server s2

chunk map Local fs

chunks/924 => data1

$2,85,87 hunks/521 = 2
5259 511 chunks/5 > data

logical

32

Client Reads a Chunk

Master Client GFS server s2

chunk map

s2,85,57
s2,59,s11

Local fs

chunks/924 => data1
chunks/521 => data2

33

Client Reads a Chunk

Master Client GFS server s2

chunk map
|Ogica| 52,35,57

s2,85,57
s2,59,s11

Local fs

chunks/924 => data1
chunks/521 => data2

34

Client Reads a Chunk

Master GFS server s2

chunk map Local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical

35

Client Reads a Chunk

Client GFS server s2

Master

chunk ma
° read 924: Local fs

offset=0 chunks/924 => datat

$2,895,87 SFCEVISE chunks/521 => data2
s2,59,s11

logical

36

Client Reads a Chunk

Master Client GFS server s2

chunk map Local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical

37

Client Reads a Chunk

Client GFS server s2

Master

chunk map

: Local fs
tofios] read 924:
offset=1 VISl chunks/924 => data1
s2,s5,87 SIPERIVIS N chunks/521 => data2

s2,59,s11

38

Client Reads a Chunk

Master Client GFS server s2

chunk map Local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical

39

File Namespace

Master Client GFS server s2
.Jile namespace: .
/ffoo/bar =>924,813

chunk map Local fs

chunks/924 => data1

s2,85,s7 chunks/521 => data2
s2,59,s11

logical

path names mapped to logical names

40

Google File System
MapReduce

MapReduce Overview

o Motivation
o Architecture

o Programming Model

42

Problem

o Datasets are too big to process using single
machine

o Good concurrent processing engines are rare

o Want a concurrent processing framework that is:
— easy to use (no locks, CVs, race conditions)
— general (works for many problems)

MapReduce

o Strategy: break data into buckets, do
computation over each bucket

o Google published details in 2004

o Open source implementation: Hadoop

G hEDbED

was
what
was
what
was

map

Example: Word Count

28
129
54
18
32
10

How to quickly sum word counts with
multiple machines concurrently?

: Word Count

was

what
was
what
was

map

28
129
54
18
32
10

Example
mapper 1

was 28
129

was 54
mapper 2

what 18

was 32

map 10

46

Vord coun

was
what
was
what
was

map

28
129
54
18
32
10

Example: Word Count

mapper 1
was 28

was | 28+54
what 129

what | 129
was 54
mapper 2
what 18 what | 18
was 32 was |32
map 10 map |10

47

was
what
was
what
was

map

28
129

54
18
32
10

Example: Word Count

reducer 1

was

28+54

Reduce was

what

129

reducer 2

what

18

Reduce what

mapper 1
was 28
what 129
was 24

mapper 2
what 18
was 32
map 10

was

32

map

10

e

48

was
what
was
what
was

map

28
129

54
18
32
10

Example: Word Count

reducer 1

was

28+54

was: 114

what

129

reducer 2

what

18

what: 147

mapper 1
was 28
what 129
was 24

mapper 2
what 18
was 32
map 10

was

32

map

10

i

49

MapReduce Overview

o Motivation
o Architecture

o Programming Model

50

MapReduce Architecture

. M rn :
Client : aster node !

3

Worker node br node 2 Worker node N

Chunks | | Chunks | . Chunks i

MapReduce Architecture

. Master node

Client
8 GFS layer
storing data
""""""" chunks

Warker node N

Worker node br node 2

L | L | |
IJ : IJ ! IJ

MapReduce over GFS

o MapReduce writes and reads data to/from GFS

o MapReduce workers run on same machines as
GFS server daemons

Intermediate GFS
Mappers : Reducers .
local files files

53

MapReduce Data Flows &
Executions

User
Program
() fork ." : e
© (1) fork t1) fork
. e
&) assign
_.assign reduce .

map :

split 0

split 1

split 2

output
file O

(6) wrile
worker
(5) remote read

split 3

M(—\ (4) local write
worker

split 4

output
file 1

Input
files

Map Intermediate files Reduce
phase (on local disks) phase

Output
files

54

User

Program
1) fork .* : e
(1) fork At (1) fork
@ assign
_.assign reduce .

map

worker

split O
split 1

(6) wrile
> output
(5) remote read worker file 0
split 2 M,@ (4) local write
worker
split 3 output

file 1
split 4

worker

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Intermediate GFS

HRigEelE R Tioducers o o

MapReduce Overview

o Motivation
o Architecture

o Programming Model

56

Map/Reduce Function Types

o map(ki1, v1) = list(k2, v2)
o reduce(k2, list(v2)) = list(k3, v3)

Hadoop API

public void map(LongWritable key, Text value) {
// WRITE CODE HERE

public void reduce(Text key, Iterator<IntWritable> values)

{
// WRITE CODE HERE

58

MapReduce Word Count Pseudo Code

func mapper(key, line) {
for word in line.split()
vield word, 1

b

func reducer(word, occurrences) {
vield word, sum(occurrences)

b

59

Very
big
data

90F
o 20

= =
058
=
o B
o uy)

MapReduce Word Count

MapReduce Word Count

Split data |-
big | — | Split data |-
data .

Split data |-

The overall !
Input Splitting

Deer Bear River ——m

Deer Bear River
Car Car River » CarCarRiver ——m
Deer Car Bear

Deer CarBear —»

MapReduce Word Count

Split data | — count—
Very Split data | — COUNt—
big | | Split data | — count—
data n
|
Split data | — count—
The overall MapReduce word co
Input Splitting Mapping
Deer,1 —— =
Deer Bear River » Bear, 1
River, 1
Deer Bear River Car, 1
Car Car River » Car Car River » Car, 1
Deer Car Bear River, 1
Deer, 1
Deer Car Bear » Car, 1
Bear, 1

MapReduce Word Count

Split data | — COUNt— | count
Very Split data | — COUNt— | count
big | | Splitdata |— COUNt—| count |~
data . .

Split data | — COUNt— | coynt

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing
Bear, 1 » Bear, 2
Deer, 1 » Bear, 1
Deer Bear River » Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3
Deer Bear River Car, 1 Car, 1
Car Car River » Car Car River » Car, 1
Deer Car Bear River, 1
Deer, 1 » Deer, 2
Deer, 1
Deer, 1
Deer Car Bear » Car, 1
Bear, 1 River, 1 » River, 2
River, 1

Very
big
data

Split data

Split data

Split data

Input

Split data

Splitting

Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Car Car River

Deer Car Bear

MapReduce Word Count

— COU nt—» count
Merged
—_— count—, —-mnerge —
count 9 counts
|
|
The overall MapReduce word count process
Mapping Shuffling Reducing Final result
Bear, 1 » Bear, 2
Deer, 1 » Bear, 1
» Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3 » Bear, 2
Car, 1 Car, 1 Car, 3
» Car, 1 Deer, 2
River, 1 River, 2
Deer, 1 » Deer, 2 -
Deer, 1
Deer, 1
» Car, 1
Bear, 1 River, 1 » River, 2
River, 1

64

Very
big
data

MapReduce Grep

Split data

Split data

Split data

Split data

— grep —
— grep —
— grep —

— grep —

matches

matches

matches

matches

— cat —

All
matches

Announcements

o Homework assignment 2 due mid-night this
Friday (11:59pm Oct 5)

o Project milestone 1: mid-term proposal
presentation
— Oct 17
— Proposal report due Oct 26

