
CS 795 Distributed Systems
& Cloud Computing

Fall 2018

Lec 5: Big data systems
Yue Cheng



Agenda
§ GFS/MapReduce primer

§ 5 min break

§ Spark discussion

§ 5 min break

§ Bigtable discussion

§ Project discussion + Q&A

2



Google File System
MapReduce

3



Google File System
MapReduce

4



Google File System (GFS) 
Overview

o Motivation

o Architecture

5



GFS
o Goal: a global (distributed) file system that 

stores data across many machines
– Need to handle 100’s TBs

o Google published details in 2003

o Open source implementation: 
– Hadoop Distributed File System (HDFS)

6



Workload-driven Design
o Google workload characteristics

– Huge files (GBs)
– Almost all writes are appends
– Concurrent appends common
– High throughput is valuable
– Low latency is not

7



Example Workloads
o Read entire dataset, do computation over it

o Producer/consumer: many producers append 
work to file concurrently; one consumer reads 
and does work

8



Workload-driven Design
o Build a global (distributed) file system that 

incorporates all these application properties

o Only supports features required by applications

o Avoid difficult local file system features, e.g.:
– rename dir
– links

9



Real-world use cases of HDFS
o NetApp provides storage solution to 

businesses/companies
o Large financial firm: 60 PB of raw data
o Requires 1200 HDFS storage nodes organized 

as a data lake
– Includes 3x replicas + overprovisioned space for 

failures etc.
– 288 TB disk capacity per HDFS node (storage dense 

configuration)

10



Google File System (GFS) 
Overview

o Motivation

o Architecture

11



Replication

12

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A A



Replication

13

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C



Replication

14

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C

Similar to RAID, but less orderly than RAID
• Machines’ capacity may vary
• Different data may have different replication factors



Data Recovery

15

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C



Data Recovery

16

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C C



Data Recovery

17

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA

Replicating A to maintain a replication factor of 2



Data Recovery

18

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Replicating C to maintain a replication factor of 3



Data Recovery

19

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back



Data Recovery

20

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back



Data Recovery

21

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C



Data Recovery

22

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C

Data Rebalancing
Deleting one A to maintain a replication factor of 2



Data Recovery

23

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C



Data Recovery

24

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Data Rebalancing
Deleting one C to maintain a replication factor of 3



Data Recovery

25

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Question: how to maintain a global view of all data
distributed across machines?



GFS Architecture

26

Master

Clients GFS Servers



GFS Architecture

27

Master

Clients GFS Servers

RPC RPC

RPC



GFS Architecture

28

Master
[metadata]

Clients GFS Servers
[data]

RPC RPC

RPC
many many

one



GFS Architecture

29

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Master
[metadata]

Client 1 Client 2 Client 3



Data Chunks
o Break large GFS files into coarse-grained data 

chunks (e.g., 64MB)

o GFS servers store physical data chunks in local 
Linux file system

o Centralized master keeps track of mapping 
between logical and physical chunks

30



Chunk Map

31

Master

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…



GFS Server s2

32

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Master



Client Reads a Chunk

33

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

lookup 924

Master



Client Reads a Chunk

34

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

s2,s5,s7

Master



Client Reads a Chunk

35

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

ClientMaster



Client Reads a Chunk

36

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=0
size=1MB

Master



Client Reads a Chunk

37

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master



Client Reads a Chunk

38

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=1MB
size=1MB

Master



Client Reads a Chunk

39

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master



File Namespace

40

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

path names mapped to logical names

file namespace:
/foo/bar => 924,813
/var/log => 123,999

Master



Google File System
MapReduce

41



MapReduce Overview
o Motivation

o Architecture

o Programming Model

42



Problem
o Datasets are too big to process using single 

machine

o Good concurrent processing engines are rare

o Want a concurrent processing framework that is:
– easy to use (no locks, CVs, race conditions)
– general (works for many problems)

43



MapReduce
o Strategy: break data into buckets, do 

computation over each bucket

o Google published details in 2004

o Open source implementation: Hadoop

44



Example: Word Count

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

45

How to quickly sum word counts with
multiple machines concurrently?



Example: Word Count

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

46

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

47

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

48

reducer 1

reducer 2

Reduce was

Reduce what

Reduce map

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



Example: Word Count

49

reducer 1

reducer 2

was: 114

what: 147

map: 10

was 28+54

what 129

what 18

was 32

map 10

Word Count

was 28

what 129

was 54

what 18

was 32

map 10

mapper 1

was 28

what 129

was 54

mapper 2

what 18

was 32

map 10



MapReduce Overview
o Motivation

o Architecture

o Programming Model

50



MapReduce Architecture

51

Master

Worker Worker Worker

Master node

Worker node 1 Worker node 2 Worker node N

Chunks

Client

Chunks Chunks



MapReduce Architecture

52

Master

Worker Worker Worker

Master node

Chunks

Client

Chunks Chunks

GFS layer 
storing data 

chunks

Worker node 1 Worker node 2 Worker node N



MapReduce over GFS
o MapReduce writes and reads data to/from GFS

o MapReduce workers run on same machines as 
GFS server daemons

53

GFS
files Mappers Intermediate 

local files Reducers GFS
files



MapReduce Data Flows & 
Executions

54



55

GFS
files Mappers Intermediate 

local files Reducers GFS
files



MapReduce Overview
o Motivation

o Architecture

o Programming Model

56



Map/Reduce Function Types
o map(k1, v1) à list(k2, v2)
o reduce(k2, list(v2)) à list(k3, v3)

57



Hadoop API
public void map(LongWritable key, Text value) {

// WRITE CODE HERE
}

public void reduce(Text key, Iterator<IntWritable> values) 
{

// WRITE CODE HERE
}

58



MapReduce Word Count Pseudo Code

func mapper(key, line) {
for word in line.split()

yield word, 1
}

func reducer(word, occurrences) {
yield word, sum(occurrences)

}

59



MapReduce Word Count

60

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

61

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

62

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

63

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Word Count

64

Very 
big

data

Split data
Split data
Split data

Split data

count
count
count

count

count
count
count

count

merge Merged
counts



MapReduce Grep

65

Very 
big

data

Split data
Split data
Split data

Split data

grep
grep
grep

grep

matches

matches
matches

matches

cat All
matches



Announcements
o Homework assignment 2 due mid-night this 

Friday (11:59pm Oct 5)

o Project milestone 1: mid-term proposal 
presentation
– Oct 17
– Proposal report due Oct 26

66


