
CS 795: Distributed Systems
& Cloud Computing

Fall 2018
Lec 7: Container registry analysis

Yue Cheng

Final presentation poll
Plan to move discussion of Paper16 (RAMCloud) from Nov
28 to Dec 5

• So we will have two paper discussions on Dec 5 (the
other will be led by me: Alibaba workload analysis)

Thinking about moving the final presentation to Dec 14 (2nd
Friday of December)

• Roughly 3 hours for 7 teams

• Format: Pizza + talks

!2

Docker usage patterns
remain a mystery

• How are Docker containers used and managed at scale?

• How can we streamline Docker workflows?

• How do we facilitate Docker performance analysis

!3

So what we did…
• Conduct a large-scale analysis of a real-world production

Docker workload from geo-distributed IBM container
service

• Provide insights and develop heuristics to improve
Docker workflow performance

• Develop an open source Docker workflow analysis tool

* Anwar et al.: Improving Docker
Registry Design based on Production

Workload Analysis

!4

I will briefly talk about…
• Conduct a large-scale analysis of a real-world

production Docker workload from geo-distributed IBM
container service

• Provide insights and develop heuristics to improve
Docker workflow performance

• Develop an open source Docker workflow analysis tool

* Anwar et al.: Improving Docker
Registry Design based on Production

Workload Analysis

!5

Background: Docker
container image

• Container images are divided
into layers

• The metadata file is called
manifest (JSON-formatted)

• Users create repositories to
store images

• Images in a repository can have
different tags (versions)

Registry (e.g., Dockerhub,
IBM Container Registry)

AliceBob
Redis Wordpress
v2.8

v2.6

latest

v4.8

v4.7

CentOS

myOS

JSON

Layer
Layer

Layer

Manifest

Container
image

}

!6

Background: Docker
container registry

• Docker container images are stored online in Docker Registry

• Push image:

• HEAD layers

• POST/PUT/PATCH layer

• PUT manifest

• Pull image:

• GET manifest

• GET layers

!7

The IBM Cloud Docker
registry traces

• Capture a diverse set of customers: individuals, small &
medium businesses, government institutions

• Cover five geographical locations and seven availability
zones

• Span 75 days and 38M requests that account for more
than ~181TB of data transferred

!8

IBM Docker registry service
Five geographical locations constitute seven Availability Zones (AZ)

• Production

1. Dallas (dal)

2. London (lon)

3. Frankfurt (fra)

4. Sydney (syd)

• IBM internal

5. Staging (stg)

• Testing

6. Pre-staging (prs)

7. Development (dev)

NginxNginxNginx

Registry

Registry

Registry Object store

Broadcaster

!9

Tracing methodology
• Collected workload statistics data from Registry, Ngnix,

and Broadcaster

• Studied requests:

• GET, PUT, HEAD, PATCH, POST

• Combined traces by matching the incoming HTTP
request identifier across the components

• Removed redundant fields and anonymized the whole
traces

NginxNginxNginx

Registry

Registry

Registry

Broadcaster

!10

To answer the following
questions…

• Q1: What is the distribution of request types?

• Q2: What is the manifest size distribution?

• Q3: What is the layer size distribution?

• Q4: Is there access locality?

• … (rest details in paper)

!11

Q1: What is the distribution
of request types

0%	
20%	
40%	
60%	
80%	

100%	

da
l	

lo
n	 fr
a	

sy
d	

st
g	

pr
s	

de
v	

Re
qu

es
ts
	

pull	 push	

!12

Q1: What is the distribution
of request types

0%	
20%	
40%	
60%	
80%	

100%	

da
l	

lo
n	 fr
a	

sy
d	

st
g	

pr
s	

de
v	

Re
qu

es
ts
	

pull	 push	

80-95% of requests are reads (pulls)

!13

Q1: What is the distribution
of request types

0%	

20%	

40%	

60%	

80%	

100%	

dal	 lon	 fra	 syd	 stg	 prs	 dev	

Re
qu

es
ts
	

GET	 POST	 HEAD	 PUT	 PATCH	

!14

Q1: What is the distribution
of request types

60% of requests are GET and 10-22% are HEAD requests

0%	

20%	

40%	

60%	

80%	

100%	

dal	 lon	 fra	 syd	 stg	 prs	 dev	

Re
qu

es
ts
	

GET	 POST	 HEAD	 PUT	 PATCH	

!15

Q2: What is the manifest
size distribution

!16

Q2: What is the manifest
size distribution

Typical manifest size is around 1KB

!17

Q3: What is the layer size
distribution

!18

Q3: What is the layer size
distribution

65% of the layers are smaller than 1MB and around 80% are
smaller than 10MB

!19

Q4: Is there access locality?

!20

Q4: Is there access locality?
1% of the most accessed layers account for 42% and 59%

of all requests in dal and syd, respectively

!21

Q4: Is there access locality?

0%	

5%	

10%	

15%	

20%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	
stg	 prs	 dev	

!22

Q4: Is there access locality?

0%	

5%	

10%	

15%	

20%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	
stg	 prs	 dev	

The popular rate drops rapidly as we move from the top
most popular to the 10th most popular layer

!23

Enabling further analysis:
analysis of caching effect

• Experimental setup

• Registry on 32-core machine with 64GB DRAM and

512GB SSD

• OpenStack Swift object store on 10 similar nodes

• Trace replayer on 6 separate nodes

!24

Summary
• Performed a quantitative characterization study of a

production Docker registry deployment

• Registry workload is read-intensive

• Layer sizes are mostly small (perfect for caching)

• Strong correlation exists between layer requests (good for
prefetching)

• Caching is such an optimization technique that can be
universally applied anywhere in the Computer Science world

• Docker registry workloads checked √

