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Final presentation poll
Plan to move discussion of Paper16 (RAMCloud) from Nov 
28 to Dec 5


• So we will have two paper discussions on Dec 5 (the 
other will be led by me: Alibaba workload analysis)


Thinking about moving the final presentation to Dec 14 (2nd 
Friday of December)


• Roughly 3 hours for 7 teams


• Format: Pizza + talks
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Docker usage patterns 
remain a mystery

• How are Docker containers used and managed at scale?


• How can we streamline Docker workflows?


• How do we facilitate Docker performance analysis
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So what we did… 
• Conduct a large-scale analysis of a real-world production 

Docker workload from geo-distributed IBM container 
service


• Provide insights and develop heuristics to improve 
Docker workflow performance


• Develop an open source Docker workflow analysis tool

* Anwar et al.: Improving Docker 
Registry Design based on Production 

Workload Analysis
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I will briefly talk about… 
• Conduct a large-scale analysis of a real-world 

production Docker workload from geo-distributed IBM 
container service 

• Provide insights and develop heuristics to improve 
Docker workflow performance


• Develop an open source Docker workflow analysis tool

* Anwar et al.: Improving Docker 
Registry Design based on Production 

Workload Analysis
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Background: Docker 
container image

• Container images are divided 
into layers


• The metadata file is called 
manifest (JSON-formatted)


• Users create repositories to 
store images


• Images in a repository can have 
different tags (versions)

Registry (e.g., Dockerhub, 
IBM Container Registry)
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Background: Docker 
container registry

• Docker container images are stored online in Docker Registry


• Push image:


• HEAD layers


• POST/PUT/PATCH layer


• PUT manifest


• Pull image:


• GET manifest


• GET layers
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The IBM Cloud Docker 
registry traces

• Capture a diverse set of customers: individuals, small & 
medium businesses, government institutions


• Cover five geographical locations and seven availability 
zones


• Span 75 days and 38M requests that account for more 
than ~181TB of data transferred

!8



IBM Docker registry service
Five geographical locations constitute seven Availability Zones (AZ) 

• Production


1. Dallas (dal)


2. London (lon)


3. Frankfurt (fra)


4. Sydney (syd)


• IBM internal


5. Staging (stg)


• Testing 


6. Pre-staging (prs)


7. Development (dev)

NginxNginxNginx

Registry

Registry

Registry Object store

Broadcaster
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Tracing methodology
• Collected workload statistics data from Registry, Ngnix, 

and Broadcaster 

• Studied requests:


• GET, PUT, HEAD, PATCH, POST


• Combined traces by matching the incoming HTTP 
request identifier across the components


• Removed redundant fields and anonymized the whole 
traces
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Registry

Registry

Registry
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To answer the following 
questions… 

• Q1: What is the distribution of request types? 

• Q2: What is the manifest size distribution? 

• Q3: What is the layer size distribution? 

• Q4: Is there access locality? 

• …  (rest details in paper)
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Q1: What is the distribution 
of request types
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Q1: What is the distribution 
of request types
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80-95% of requests are reads (pulls)
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Q1: What is the distribution 
of request types
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Q1: What is the distribution 
of request types

60% of requests are GET and 10-22% are HEAD requests
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Q2: What is the manifest 
size distribution
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Q2: What is the manifest 
size distribution

Typical manifest size is around 1KB
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Q3: What is the layer size 
distribution
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Q3: What is the layer size 
distribution

65% of the layers are smaller than 1MB and around 80% are 
smaller than 10MB
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Q4: Is there access locality?
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Q4: Is there access locality?
1% of the most accessed layers account for 42% and 59% 

of all requests in dal and syd, respectively
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Q4: Is there access locality?
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Q4: Is there access locality?
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The popular rate drops rapidly as we move from the top 
most popular to the 10th most popular layer

!23



Enabling further analysis: 
analysis of caching effect

• Experimental setup

• Registry on 32-core machine with 64GB DRAM and 

512GB SSD

• OpenStack Swift object store on 10 similar nodes

• Trace replayer on 6 separate nodes
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Summary
• Performed a quantitative characterization study of a 

production Docker registry deployment


• Registry workload is read-intensive


• Layer sizes are mostly small (perfect for caching)


• Strong correlation exists between layer requests (good for 
prefetching)


• Caching is such an optimization technique that can be 
universally applied anywhere in the Computer Science world


• Docker registry workloads checked √


