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INTRODUCTION

• TensorFlow is a machine learning system that operates at large scale and in 

heterogeneous environments.

• Supports large-scale training and inference.

• Runs on wide-range of devices from distributed clusters in datacenters to 

running locally on mobile devices.

• Supports experimentation and system-level optimizations

• Uses unified dataflow graph to represent computation and state.



BACKGROUND & MOTIVATION

• DistBelief

• Design principles

• Related Work



DISTBELIEF

• Uses parameter server architecture.

• Stateless worker process performs bulk of computation while training.

• Stateful parameter server process maintains the version of the model 

parameters.

• Layers and Neural Network.



NEURAL NETWORKS

• Weight matrix and bias(aka parameters) are written to the parameter server which combine it with the 

current state.



ISSUES WITH DISTBELIEF

• Defining new layers : Language(C++) familiarity.

• Refining training algorithms : Requires modifying parameter server

implementation.

• Incompatibility with advances models.

• Inability to scale-down to work with mobile/smaller deployment.



DESIGN PRINCIPLES

• High-level scripting interface(Python API)

• Optimizations without modifying core system.

• Dataflow graph with operators as nodes.

• Create new layers using the high-level interface

• 2 phase execution :

• Define NN as graph with placeholder for input

• Execute optimized version of the program on available devices



• Common abstraction for heterogeneous accelerators

• Runs on CPUs, GPUs and TPUs(Tensor Processing Units) for ML

• Methods required :

• Issuing kernel for execution

• Memory allocation for inputs and outputs

• Buffer transfer from and to host memory.

• Tasks 

• Process that communicate over network

• Contain devices and export execution API

• PS tasks

• Worker tasks



RELATED WORK

• Single-machine frameworks : 

• Single system with CPU and GPU

• Caffe, DistBelief : Difficulty in adding new layers

• Theano* : Dataflow graph, efficient code generation for training.

• Torch

• Fine-grained control over execution and memory utilization. 

• Lacks dataflow graph for portability over to small-scale usage(experiment, training and 

deployment).



• Batch dataflow systems

• MapReduce for ML

• DryadLINQ adds high-level query and supports advanced algorithms.

• Dandelion adds code generation for GPUs and FPGAs.

• Spark adds caching. Better for iterative ML algorithms.

• Primary Limitation : Immutable data and deterministic computation means 

expensive updating of model.



• Parameter Servers

• Servers manage and parallel workers update 

• Project Adam : Efficient training of convolutional NNs.

• Innovations in consistency, fault tolerance, rescaling and performance.

• MXNet* 

• Uses dataflow graph

• Parameter server scales training across machines

• Key-value store interface supports aggregating updates from devices

• Requires core system modification to support sparse gradient updates



EXECUTION MODEL

• Single dataflow graph to represent computations and state.

• Communications between subcomputations are explicit. Easier for partition 

and parallel execution.

• Supports multiple concurrent executions on overlapping subgraphs

• Mutable state in vertices that can be shared during execution. Easier in-place 

updates and propagation.



DATAFLOW GRAPH ELEMENTS

• Tensors

• N-Dimensional arrays of primitive types

• Represent inputs and outputs of operations

• Dense at lowest level(non-zero values).

• TF provides APIs for sparse to dense and back for usage.

• Operations

• Vertices representing computations

• Takes tensors as inputs and produces output tensors.

• Has a named “type” and compile-time attributes.



• Stateful : Variables

• Contains mutable states read and/or written upon execution

• Takes no inputs; produces reference handle ‘r’.

• Eg: Read takes ‘r’ as input and returns value(State[r]) as dense tensor

• Stateful : Queues

• Supports advanced coordination

• Eg: FIFOQueue – Has internal queue of tensors and allows concurrent access in the said 

order. Produces reference handle upon execution like variables.



PARTIAL AND CONCURRENT EXECUTION

• Client specifies the subgraph for execution along with edges to be fed as 

inputs and to fetch outputs.

• API invocations are referred to as steps. TF supports multiple concurrent steps 

on the same graph.

• Model updates based on the multiple execution instances parallelly.



DISTRIBUTED EXECUTION

• TF runtime places operations on devices based on constraints.

• The placement algorithm computes the feasible device, sets of operations to be 

collocated etc.

• Users can specify this manually to boost performance

• Send : provide input to tensor based on rendezvous key for the value.

• Recv : Waits for the output value to be available for rend. Key before producing it.

• Session : Maintains mapping to caches graphs for reuse.



EXTENSIBILITY CASE STUDIES

• Differentiation and optimization

• Training very large models

• Fault tolerance

• Synchronous replica coordination



DIFFERENTIATION AND OPTIMIZATION

• Includes user-level library to perform differentiation based on the different 

inputs. Also uses different techniques to manage the available limited memory. 

• Availability of multiple optimizations without requirement to modify the 

underlying system. Eg. :  Write operations that update the values after each 

computational step.



TRAINING VERY LARGE MODELS

• Implement sparse embedding layers.

• TF generates this graph.

• Gather : Extracts set of rows from tensor and TF co-locates operation with variable.

• Part : Divides incoming indices into variable-sized tensors that contain indices for each shard.

• Stitch : Reassembles partial results into single result tensor.

• Offload arbitrary computation onto devices that have the shared parameters.



FAULT TOLERANCE

• Likely failures or pre-emption. But not very often.

• User-level checkpointing.

• Save : Writes tensors to checkpoint file. 

• Restore : Reads tensors from checkpoint file

• No consistency checkpoints in library.

• Flexibility for users to specify keep/update checkpoints based on 

requirement.



SYNCHRONOUS REPLICA COORDINATION

• Asynchronous training – Higher throughput vs. use of stale parameters for 

training.

• Synchronous – Using queue. Accumulate gradients. Stragglers limitation.

• Backup workers : proactive execution. Aggregate first m of n updates.



IMPLEMENTATION

• Core library : C++

• C API layer separates user-level code from 

core runtime.

• Master processes requests, generates tasks, 

partitions and caches graphs.

• Executor handles master requests and 

schedules the execution of tasks.

• CPU and GPU use cudaMemcpyAsync() API 

for data transfer.

• RPC and RDMA used for transfer between 

tasks.

• Visualization dashboard provided to follow 

progress and visualize graphs etc.



EVALUATION

• Single-machine benchmarks

• Six-core Intel Core i7-5930K CPU, NVIDIA Titan X GPU

• Training with 32-bit floats.

• Neon outperforms TF because of hand-optimized convolutional kernels.



SYNCHRONOUS REPLICA MICROBENCHMARK

• Read shared model parameters from 16 PS 

tasks + trivial computation + update 

parameters.

• Scalar performs best. Fetches 4-byte value 

from each task. 

• Dense curves have slowest step times as entire

model is fetched.

• Sparse curves show throughput of embedding 

lookup operation. 32 randomly selected 

entries from  large embedding matrix.



IMAGE CLASSIFICATION

• Google’s Inception-v3 model.

• Achieves 78.8% accuracy in ILSVRC 2012 image classification challenge.



LANGUAGE MODELLING
• Speech recognition, text prediction and translational applications.

• Use 40,000 most common words for experiment.

• Full SoftMax : Output * (512 x 40000) matrix

• Adding tasks more effective vs. workers.

• Sampled SM reduces data transferred and 

computation performed on the PS tasks.

• Sample SM : Output * random true class sparse matrix

* random false class sample

• Reduces data transfer and computation by a factor of 78.



CONCLUSIONS & FUTURE WORK

• Harness large-scale heterogeneous system for production tasks and 

experimenting with new approaches.

• Performant and scalable.

• Open-source and already in production.

• Automation of placement algorithm?

• Supporting strong consistency?

• Limitation of static dataflow graph vs dynamic unfolding of computation.


