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Statistical methods in recognition

■ Basic steps in classifier design
– collect training images

– choose a classification model

– estimate parameters of classification model from training images

– evaluate model on training data and refine

– collect test image data set

– apply classifier to test data
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Why is classification a problem?

■ Because classes overlap in our (impoverished)
representations

■ Example:  Classify a person as a male or female based on
weight
– Male training set :{ 155, 122, 135, 160, 240, 220, 180, 145}

– Female training set: {95, 132, 115, 124, 145, 110, 150}

– Unknown sample has weight 125.  Male or female?
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Factors that should influence our
decision

■ How likely is it that a person weighs 125 pounds given that
the person is a male? Is a female?
– Class-conditional probabilities

■ How likely is it that an arbitrary person is a male? A
female?
– Prior class probabilities

■ What are the costs of calling a male a female? A female a
male?
– Risks
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Basic approaches to classification

1. Build probabilistic models of our training data, and
compute the probability that an unknown sample belongs
to each of our possible classes using these models.

2. Compare an unknown sample directly to each member of
the training set, looking for the training element “most
similar” to the unknown.
Nearest neighbor classification

3. Train a neural network to recognize unknown samples by
“teaching it” how to correctly train the elements of the
training set.
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A primer on probability

■ Probability spaces - models of random phenomena

■ Example:  a box contains s balls labeled 1, ..., s
– Experiment:  Pick a ball, note its label and then replace it in the

box.  Repeat this experiment n times.

– Let Nn(k) be the number of times that a ball labeled k was chosen
in an experiment of length n

– example: s = 3, n = 20

1 1 3 2 1 2 2 3 2 3 3 2 1 2 3 3 1 3 2 2

– N20(1) = 5   N20(2) = 8  N20(3) = 7
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Primer on probability

■ The relative frequencies of the outcomes 1,2,3 are
– N20(1)/20 = .25   N20(2)/20 = .40   N20(3)/20 = .35

– As n gets large, these numbers should settle down to fixed numbers
p1, p2, p3

– We say pi is the probability that the i’th ball will be chosen when the
experiment is performed once

■ Mathematical model:  Let Ω be a set having s points which
we place into a 1-1 correspondence with the possible
outcomes of an experiment.

✦ Call the points ωk

✦ to each ωk we associate pk = 1/s and call it the probability of ωk.



Statistical recognition - 7 Zoran Duric

Primer on probability

■ Suppose:  we color balls 1, ..., r red and balls r+1, .., s
green
– What is the probability of choosing a red ball?

– Intuitively it is r/s = Σ pk where the sum is over all ωk such that the
k’th ball is red

■ Let A be the subset of Ω consisting of all ωk such that k is
red.
– A has r points

– A is called an event

– When we say that A has occurred we mean that an experiment has
been run and the outcome is represented by a point in A.

■ If A and B are events, then so are A ∩ B, A ∪ B and Ac
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Primer on probability

■ Assigning probabilities to events:

■ A probability measure on a set Ω is a real valued function
having domain 2Ω satisfying
– P(Ω) = 1

– 0 <= P(A) <= 1, for all

– If An are mutually disjoint sets then

P(B) = pk
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Primer on probability

■ Simple properties of probabilities
– P(Ac) = 1- P(A)

✦ P(∅)=1-P(Ω) = 1-1 = 0

✦ if A is a subset of B, then P(A) <= P(B)

✦ P(A∪ Β) = P(A) + P(B) - P(A∩ B)

■ Conditional probabilities
– Our box has r red balls labeled 1, ..., r and b black balls labeled

r+1, ..., r+b.  If the ball drawn is known to be red, what is the
probability that its label is 1?

✦ A - event “red”

✦ B - event “1”

✦ interested in conditional probability of B knowing that A has
occurred - P(B|A)

A B
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Primer on probability

■ Let A and B be two events such that P(A) > 0.  Then the
conditional probability that B occurs given A, written
P(B|A) is defined to be

■ Ball example:  what is P(“1”| “red”)
– Let r = 5 and b = 15

– P(1 and red) = .05

– P(red) = .25

– So, P(1 | red) = .05/.25 = .20

P(B| A) =
P(B ∩ A)

P( A)
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Primer on probability

■ General case
– A1, ..., An are mutually disjoint events with union Ω.

✦ think of the Ai as the possible identities of an object

– B is an event with P(B) > 0

✦ think of B as an observable event, like the area of a component
in an image

– P(B|Ak) and P(Ak) are known, k = 1,..., n

✦ P(B|Ak) is the probability that we would observe a component
with area B if the identify of the object is Ai

– Question:  What is P(Ai|B)

✦ What we will really be after - the probability that the identity
of the object is Ai given that we make measurement B

Statistical recognition - 12 Zoran Duric

Primer on probability

UU

n

k
AB

n

k
ABB kk

1
)(

1
)(

=
∩

=
=∩=

So intersections are disjoint since the Ak are and

P(B) = P(B ∩ Ak)
k=1

n

∑
But

P(B ∩ Ak) = P(A k)P(B| Ak)

Combining all this we get Bayes Rule

P(Ai|B) =
P(Ai ∩ B)

P(B)
=

P(Ai)P(B| Ai)

P(Ak)P(B| Ak)
k =1

n∑

P(B| A) =
P(B ∩ A)

P( A)
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Training - computing P(B|Ai)

■ Our training data is used to compute the       P(B|Ai), where
B is the vector of features we plan to use to classify
unknown images in the classes Ai

– B might be (area, perimeter, moments)

■ How might we represent P(B|Ai)?
– as a table

✦ quantize area, perimeter and average gray level suitably, and
then use the training samples to fill in the three dimensional
histogram.

✦ analytically, by a standard probability density function such as
the normal, uniform, ...A

P
G
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Primer on probability - training

■ When we have many random variables it is usually
impractical to create a table of the values of P(B|Ai)from
our training set.
– Example

✦ 5 measurements

✦ quantize each to 50 possible values

✦ Then there are 505 possible 5-tuples we might observe in any
element of the training set, and we would need to estimate this
many probabilities to represent the conditional probability

– too few training samples

– too much storage required for the table
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Primer on probability

■ Instead, it is usually assumed that P(B|Ai) has some simple
mathematical form
– uniform density function

✦ each xi takes on values only in the finite range [ai, bi]

✦ P(B|Ai) is constant for any realizable (x1, ..., xn)

✦ for one random variable, P(B|Ai)= 1/(b-a) for a <= x <= b and
0 elsewhere

– Normal distribution

– In any case, once the parameters of the assumed density function
are estimated, its goodness of fit should also be evaluated.

f (x) = n(x;µ,σ ) = 1
2πσ

e
−(

x −µ
σ

)2

Statistical recognition - 16 Zoran Duric

Primer on probability

■ Density function is  called
the Gaussian function and
the error function
–  µ is called the location

parameter

–  σ is called the scale
parameter

■ Generalization  to
multivariate density
functions
– mean vector

– covariance matrix
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Prior probabilities and their role in
classification

■ Prior probabilities of each object class
– probabilities of the events: object is from class i (P(Ai))

– Example
✦ two classes - A and B; two measurement outcomes: 0 and 1

✦ prob(0|A) = .5, prob(1|A) = .5; prob(0|B) = .2 prob(1|B)=.8

– Might guess that if we measure 0 we should decide that the class is A, but if
we measure 1 we should decide B

– But suppose that P(A) = .10 and P(B) = .90
✦ Out of 100 samples, 90 will be B’s and 18 of these (20% of those 90) will have

measurement 0

– We will classify these incorrectly  as A’s

– Total error is nP(B)P(0|B)

✦ 10 of these samples will be A’s and 5 of them will have measurement 0 - these
we’ll get right

– Total correct is nP(A)P(0|A)
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Prior probabilities

■ So, how do we balance the effects of the prior probabilities
and the class conditional probabilities?

■ We want a rule that will make the fewest errors
– Errors in A proportional to P(A)P(x|A)

– Errors in B proportional to P(B)P(x|B)

– To minimize the number of errors choose A if P(A)P(x|A) > P(B)P(x|B);
choose B otherwise

■ The rule generalizes to many classes.  Choose the Ci such
that P(Ci)P(x|Ci) is greatest.

■ Of course, this is just Bayes’ rule again
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Bayes error

■ The real formula for P(Ci|x) is

■ where

is a normalization factor that is the same for all classes.

■ To evaluate the performance of our decision rule we can
calculate the probability of error - probability that the
sample is assigned to the wrong class.

P(Ci |x)= P(Ci)P(x |Ci)

P(x)

P(x)= P(Ci)P(x |Ci)
i
∑
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Bayes error
■ The total error which is called the Bayes error is defined

as E[r(x)] =

■ The regions L1 and L2 are the regions where x is classified
as C1 and C2 respectively.
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Example

x

P(C1)P(x|C1) P(C2)P(x|C2)

T
L1 L2

Moving T either left or right would increase the overall
probability of error
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Example - normal distributions

■ In the case of normal distributions, the decision
boundaries that provide the Bayes error can be shown to
be quadratic functions - quadratic curves for two
dimensional probability density functions

■ In the special case where the classes have the same
covariance matrix, decision boundary is a linear function
- classes can be separated by a hyperplane
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Bayes error for normal distributions
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Adding risks

■ Minimizing total number of errors does not take into
account the cost of different types of errors

■ Example:  Screening X-rays for diagnosis
– two classes - healthy and diseased

– two types of errors

✦ classifying a healthy patient as diseased - might lead to a
human reviewing X-rays to verify computer classification

✦ classifying diseased patient as healthy - might allow disease to
progress to more threatening level

■ Technically, including costs in the decision rule is
accomplished by modifying the a priori probabilities
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Nearest neighbor classifiers

■ Can use the training set directly to classify objects from the
test set.
– Compare the new object to every element of the training set

✦ need a measure of closeness between an object from the
training set and a test object

– Choose the class corresponding to the closest element from the
training set

– Generalization - k nearest neighbors: find k nearest neighbors and
perform a majority vote

D(x,y)= (xi − yi)2

σ i
2i

∑
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Nearest neighbor classification

■ Computational problems
– Choosing a suitable similarity measurement

– Efficient algorithms for computing nearest neighbors with large
measurement sets (high dimensional spaces)

✦ k-d trees

✦ quadtrees

✦ but must use a suitable similarity measure

– Algorithms for “editing” the training set to produce a smaller set
for comparisons

✦ clustering: replace similar elements with a single element

✦ removal: remove elements that are not chosen as nearest
neighbors



Statistical recognition - 29 Zoran Duric

Other classification models

■ Neural networks

■ Structural models
– grammatical models

– graph models

– logical models

■ Mixed models
features

combining level

classes
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Primer on probability - random
variables

■ Example
– Toss a coin three times with P[head] = p

– If heads comes up we win $1

– If tails come up we lose $1

– Let X denote our winnings - it will be either 3,1,-1,-3
and it is what is actually observed in an experiment

■ Can regard X as a function on the
probability space
– for ω in Ω, X(ω) is 1,3,-1 or -3

■ Can compute P[X=c]
– P[X=3] = p3

– P[X=1] = 3p2(1-p)

■ X is called a discrete random variable

ω X(ω) P[ω]
HHH 3 p3

HHT 1 p2(1-p)
HTH 1  p2(1-p)
THH 1  p2(1-p)
HTT -1  p(1-p)2

THT -1  p(1-p)2

TTH -1  p(1-p)2

TTT -3 (1-p)3
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Primer on probability - random
variables

■ Definition: A discrete random variable, X, on a probability
space (Ω,P) is a function with
– domain Ω
– range a finite or countably infinite set {x1, x2, ..., }

– P[X=xi] means P[{ω:X(ω) = xi}]

■ The function, f, defined by
– f(x) = P[X=x]

– is called the discrete probability density function of X.

✦ Example: If p = .5 then f(-3) = f(3) = 1/8 and f(-1) = f(1) = 3/8
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Primer on probability - continuous
random variables

■ When we model “ideal” images we utilize random variables
that are continuous (intensity, area, perimeter)

■ A continuous random variable X on a probability space (Ω,P)
is a function X(ω), ω in Ω, such that for
– - ∞ < x < ∞,  { ω|X(ω) < x} is an event, and
– P(X=x) = 0

■ The distribution function, F, of a continuous random variable
X is F(x) = P[X <= x]
– 0<= F(x) <= 1

– F is nondecreasing in x

– F(- ∞ ) = 0 and F( ∞ ) = 1
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Primer on probability

■ The value of f(x) at x is NOT the probability
that X=x

– if this were the case then the total probability of all events
would be infinite!

– just add up enough finite probabilties at an infinite number of
points

– we only talk about the probabilities of intervals - P(x1 < x < x2)
which we compute by integration.

■ Most real world random variables are
discrete (weights of individuals - there are
only a few billion possibilities)

– but we treat them as continuous random variables because
there are simple mathematical formulas that we can then
manipulate to compute probabilities

x

f(x)
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Primer on probability

■ A density function is a nonnegative function f such that

■ If f is a density function, then F(x) defined below is a
distribution function

f (x)dx = 1
− ∞

∞

∫

F(x) = f (y)dy
− ∞

x

∫



Statistical recognition - 35 Zoran Duric

Primer on probability

■ The value of f(x) at x is NOT the probability
that X=x

– if this were the case then the total probability of all events
would be infinite!

– just add up enough finite probabilties at an infinite number of
points

– we only talk about the probabilities of intervals - P(x1 < x < x2)
which we compute by integration.

■ Most real world random variables are
discrete (weights of individuals - there are
only a few billion possibilities)

– but we treat them as continuous random variables because
there are simple mathematical formulas that we can then
manipulate to compute probabilities

x

f(x)
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Primer on Probability

■ Means, variance and covariances

■ The mean of a continuous random variable, x, with pdf f is

– For a discrete random variable the integral is replaced by a
summation over the possible values of the variable.

■ The variance of a continuous random variable is

µ = E[x] = xf (x)dx
−∞

∞

∫

σ 2 = E[(x − µ)2 ] = (x − µ)2∫ f ( x)dx
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Primer on probability

■ Often, we have problems in which there are many random
variables
– area, perimeter, average gray level of a connected component

■ Each has its own mean and variance, but each pair also has
a covariance

– Here, f(x1, ..., xn) is the joint pdf of all of the random variables

σxi, xj = ⋅ ⋅ ⋅ (xi − µi)(xj − µj) f (x1,..., xn)dx1 ⋅ ⋅ ⋅ dxn∫∫
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Primer on Probability

■ Example:
– Population of a city is 40% male, 60% female

– 50% of the males smoke

– 30% of the females smoke

– What is the probability that a smoker is male?
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Primer on probability

■ Define the events:
– M - male

– F - female

– S - smoker

– NS - nonsmoker

■ Probabilities we are given are:
– P(M) = .4

– P(F) = .6

– P(S|M) = .5

– P(S|F) = .3

■ Probability we want is P(M|S) = P(M∩S)/P(S)
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Primer on probability

■ P(M∩S) = P(M)P(S|M) = (.4) (.5) = .2

■ Now, S = (S∩Μ)∪(S∩F)  and (S∩Μ) ∩(S∩F) = ∅
– so P(S) = P(S∩Μ) + P(S∩F)

– P(S∩F) = P(F)P(S|F) = (.6)(.3) = .18

– P(S∩Μ) = .20 from before

■ So, P(M|S) = .20/.38 = .53


