Edge and local feature detection

0 Gradient based edge detection
0 Edge detection by function fitting
0 Second derivative edge detectors

0 Edge linking and the construction of the chain
graph
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| mportance of edge detection in computer
vision

0 Information reduction

0 replace image by a cartoon in which objects and surface
markings are outlined

0 these are the most informative parts of the image
0 Biological plausibility
0 initial stages of mammalian vision systems involve
detection of edges and local features
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1-D edge detection

0 Anideal edgeisastep function

1(x)
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1-D edge detection

1”(x)

0 Thefirst derivative of 1(x) hasapeak at the edge

0 The second derivative of 1(x) has azero crossing
at the edge
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1-D edge detection

0 Moreredlistically, image edges are blurred and
the regions that meet at those edges have noise or
variationsin intensity.

0 blur - high first derivatives near edges
0 noise - high first derivatives within regions that meet at
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Edge detectionin 2-D

0 Let f(x,y) be the imageintensity function. It has derivativesin
all directions

0 thegradient is avector whose first component is the direction in which
the first derivative is highest, and whose second component is the
magnitude of the first derivative in that direction.

0 If f is continuous and differentiable, then its gradient can be
determined from the directional derivativesin any two
orthogonal directions - standard to use x and y

1 magnitude = [(%)H(%)Z]“Z

of
ay

0 direction = tan™(%—2)
of
Ax
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Edge detectionin 2-D

0 With adigital image, the partial derivatives
are replaced by finite differences:
0 Af=1(xy) - f(x-1,y)
0 Af =1f(x,y) - f(x, y-1)
0 Alternatives are:
0 A, f =f(x+1y) - f(x-1y)
0 Ay f =1(xy+1) - f(x,y-1)
0 Robert’s gradient °!
0 Af =f(x+1,y+1) - f(x,y)
0 Af=f(xy+1) - f(x+1,y) ~™> ¢
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0
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Edge detectionin 2-D

0 How do we combine the directional derivatives to
compute the gradient magnitude?
0 use the root mean square (RMS) as in the continuous case
0 take the maximum absolute value of the directional derivatives
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Combining smoothing and differentiation -
fixed scale

0 Loca operators like the Roberts give high
responses to any intensity variation
0 local surface texture
O If the pictureisfirst smoothed by an averaging
process, then these local variations are removed
and what remains are the “prominent” edges
0 smoothing is blurring, and details are removed

0 Examplef,,(xy) = V4[f(xy) + f(x+1y) + fy+1) + f(x+1y+1)]
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Smoothing - basic problems

0 What function should be used to smooth or
average the image before differentiation?
0 box filters or uniform smoothing

0 easy to compute

o for large smoothing neighborhoods assigns too much weight to
points far from an edge

0 Gaussian, or exponential, smoothing

2
2.2
(]./ZITU)e'(X +y9)20
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Smoothing and convolution

0 The convolution of two functions, f(x) and g(x) is
definedas

h(x) = [g(x)f(x=x)dx =g(x) Uf(x)
0 When the functions f and g are discrete and when
g isnonzero only over afinite range [-n,n] then

thisintegra is replaced by the following
summation:

)= 3 o)+ ) L@r

j==n
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Example of 1-d convolution

1 2 3 4 5 6

f |8|7|8|22| 23|12|1o|1q 9|5|6|4|

g 113 |1| 3| 5|3| 1|

dEEEE
BEEEE
v L leelufad [T L] [
h(4) =3 (i) f(4+])
==

=9(=2)f(2)+ g(-D T (3 +9(0) f (4) +9@) F(9 +9(2)T(6)
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Smoothing and convolution

0 These integrals and summations extend simply to
functions of two variables:

)= (D= Y Y gD ii+kj+)

k=-nl=-n

0 Convolution computes the weighted sum of the gray
levelsin each nxn neighborhood of the image, f, using
the matrix of weights g.

0 Convolution is a so-called linear operator because
0 g*(afy +bfy) = a(g*f,) +b(g*f,)
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2-D convolution

h(5,5) = i ig(k,l)f(S +k5+1)

= g(-L-1) F(4,4) + g-L0) (4,5) + g(~11) f (4 4)
+g(0,-1)f(5,4) +9(0,0)f(55) + g(0,1) f(5,6)
+oL-D1(6,4)+ gL 0) (65 + gLY (6,6)
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Smoothing and convolution

4.2. LINEAR SYSTEMS 117
\
AlB|Cl ] |
7o Bl T—T]
DVE|F Py Ps | P h[l,_]]
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h[i,j]:Ap1+Bpg+Cpg+Dp1+Ep5+pr+G'p7+H1)8+ng
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Gaussian smoothing

0 Advantages of Gaussian filtering
0 rotationally symmetric (for large filters)
0 filter weights decrease monotonically from central
peak, giving most weight to central pixels
0 Simple and intuitive relationship between size of o and
size of objects whose edges will be detected in image.

0 The gaussian is separable:
) XY
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Advantage of seperability

0 First convolve the image with a one dimensional
horizontal filter

0 Then convolve the result of thefirst convolution
with aone dimensional vertical filter

0 For akxk Gaussian filter, 2D convolution requires
k2 operations per pixel

0 But using the separable filters, we reduce this to
2k operations per pixel.
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Separability
2 133 11
5 18
6 18
65
1121 2 1313 =2+6+3=11
2 14 |2 311515 =6+20+10=36
1121 alals =4+8+6=18

65

Edge and local feature detection - 18 Zoran Duric




Advantages of Gaussians

0 Convolution of a Gaussian with itself is another
Gaussian

0 so we can first smooth an image with asmall Gaussian

0 then, we convolve that smoothed image with another
small Gaussian and the result is equivalent to smoother
the original image with alarger Gaussian.

0 If we smooth an image with a Gaussian having sd o
twice, then we get the same result as smoothing the

image with a Gaussian having standard deviation
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Combining smoothing and differentiation -
fixed scale

0 Non-maxima supression - Retain a point asan
edge point if:
0 its gradient magnitude is higher than a threshold

0 its gradient magnitude is alocal maximain the gradient
direction

simple thresholding will
compute thick edges
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Summary of basic edge detection steps

0 Smooth the image to reduce the effects of local
intensity variations
0 choice of smoothing operator practically important
0 Differentiate the smoothed image using adigital
gradient operator that assigns a magnitude and
direction of the gradient at each pixel

0 Threshold the gradient magnitude to eliminate low
contrast edges
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Summary of basic edge detection steps

0 Apply a nonmaxima suppression step to thin the
edges to single pixel wide edges
0 the smoothing will produce an image in which the

contrast at an edge is spread out in the neighborhood of
the edge

0 thresholding operation will produce thick edges
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The scale-space problem

0 Usually, any single choice of o does not produce a good
edge map
0 alarge o will produce edges form only the largest objects, and

they will not accurately delineate the object because the
smoothing reduces shape detail

0 asmall o will produce many edges and very jagged boundaries of
many objects.
0 Scale-space approaches
0 detect edges at arange of scales[o,, 0]

0 combine the resulting edge maps

o trace edges detected using large o down through scale space to obtain more
ceurate spagial localization.

Edge and local f&ure d
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Gear image 3x3 Gradient magnitude

Edge and local feature detection - 24 Zoran Duric




High threshold

Medium threshold
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low threshold
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Smoothed 5x5 Gaussian 3x3 gradient magnitude
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smoothed 15x15 Gaussian 3x3 gradient magnitude
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Examples
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L aplacian edge detectors

0 Directional second derivativein direction of gradient hasa
zero crossing at gradient maxima

0 Can “approximate” directional second derivative with

Laplacian
az/ 407
ox® ay*

0 Its digital approximation is
0 O%(x,y) = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4
f(x.y)

Or o

1
-4
1

O r O

= [fOx+1y) - fy)] - [f(x.y) - f(x-1.y)] +
[FOGy+1)-fFOy)] - [f(xy) - f(x,y-1)]
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L aplacian edge detectors

0 Laplacians are also combined with smoothing for
edge detectors

0 Take the Laplacian of a Gaussian smoothed image -
called the Mexican Hat operator or DoG (Difference of
Gaussians)

0 Locate the zero-crossing of the operator

o these are pixels whose DoG is positive and which have
neighbor’s whose DoG is negative or zero

0 Usually, measure the gradient or directional first
derivatives at these points to eliminate low contrast
edges.
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L aplacian of Gaussian or “Mexican Hat”
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Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of Zero crossings
Gaussian
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L aplacian of Gaussian

13 x 13 Mexican hat zero crossings
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Edge linking and following

0 Group edge pixelsinto chains and chains into
large pieces of object boundary.

0 can use the shapes of long edge chainsin recognition
o dopes
0O curvature
o corners
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Edge linking and following

0 Basic steps
0 thin connected components of edges to one pixel thick
0 find ssimply connected paths

0 link them at corners into a graph model of image
contours

o optionally introduce additional corners on interiors of simple
paths

0 compute local and global properties of contours and
corners
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Thinning

0 Consider a 3x3 neighborhood of a binary image in which
the center pixel is “1”

0 the center point isasimple point if changing it fromaltoaO
does not change the number of connected component of the 3x3
neighborhood.

111 000
011 111
010 00O
0 thefirst is 8-simple but not 4-smple

0 the second is neither 4 nor 8 smple
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Thinning

0 Removal of asimple point will not change the
number of connected components in a binary
image

0 Anend point is a1 with exactly one 1-neighbor
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Thinning

0 A 1-pixel (i,)) inabinary imageisaNorth border point if
pixel (i,j+1) isaO.
0 similarly define East, West and South border points.

. o ] 0000000
0 Simple thinning algorithm 0111100
0111100
o For D =N,E,W,Sdo 0000000
Eliminate all D border points that are simple points and NOT end

points
0 Must do the directions in sequence and not together or we
could erase a component

0 Result depends on the order in which the directions are
considered
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Example - 4 simple points

00000000
01011100
01011001
01111111
01111110
01100110
00000000

00000000
01001100
01011001
01011011
01111110
01100110
00000000

W

00000000
01001100
01001001
01001011
01111110
00100010
00000000
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00000000
01001100
01011001
01010011
01111110
01000100
00000000

Zoran Duric

Finding ssimply connected chains

0 Goal: create agraph structured representation
(chain graph) of the image contours
0 vertex for each junction in the image

0 edge connecting vertices corresponding to junctions
that are connected by a chain; edge labeled with chain
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Partial graph
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Creating the chain graph

0 Algorithm: given binary image, E, of thinned
edges
0 create abinary image, J, of junctions and end points

o pointsin E that are 1 and have more than two neighbors that
are 1 or exactly one neighbor thatisa 1

0 create the image E-J = C(chains)

o thisimage contains the chains of E, but they are broken at
junctions
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Creating the chain graph

0 Perform a connected component analysis of C. For each
component storein atableT:
o itsend points (O or 2)
o thelist of coordinatesjoining its end points
0 For each point in J:
0 create anode in the chain graph , G, with a unique label
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Creating the chain graph

0 For each chaninC

0 if that chain isaclosed loop (has no end points)

o choose one point from the chain randomly and create a new
nodein G corresponding to that point

o mark that point as a “loop junction” to distinguish it from other
junctions

o create an edge in G connecting this new node to itself, and
mark that edge with the name of the chain loop
0 if that chain is not a closed loop, then it has two end
points
o create an edge in G linking the two points from J adjacent to
its end points
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Creating the chain graph

0 Datastructure for creating the chain graph

0 Biggest problem is determining for each open
chainin C the pointsin J that are adjacent to its
end points
0 create image J in which all 1's are marked with their
unique labels.

0 For each chainin C
o Examine the 3x3 neighborhood of each end point of CinJ

o Find the name of the junction or end point adjacent to that end
point from this 3x3 neighborhood.
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Finding internal “corners” of chains

0 Chains are only broken at junctions

0 but important features of the chain might occur at
internal points

0 example: closed loop corresponding to a square - would
liketo find the natural corners of the square and add
them as junctions to the chain graph (splitting the
chains at those natural corners)

0 Curve segmentation

0 similar to image segmentation, but ina1-D form
o loca methods, like edge detectors
o global methods, like region analyzers
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Local methods of curve segmentation

0 Natural locations to segment contours are points where the
slope of the curveis changing quickly
0 these correspond, perceptually, to “corners” of the curve.

0 To measure the change in slope we are measuring the
curvature of the curve
0 straight line has O curvature
0 circular arc has constant curvature corresponding to 1/r

0 Can estimate curvature by fitting a simple function (circular af
guadratic function, cubic function) to each neighborhood of a
chain, and using the parameters of the fit to estimate the
curvature at the center of the neighborhood.
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Formulae for curvature

0 Consider moving apoint, P, along a curve.

0 Let T bethe unit tangent vector as P moves
o T has constant length (1)

o but the direction of T, ¢, changes from point to point unless the
curveisasdtraight line

o measure this direction as the angle between T and the x-axis
T=dR/ds, s distance along curve
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Formulae for curvature

0 The curvature, K, is the instantaneous rate of
change of ¢ with respect to s, distance along the
curve

0 K=dg/ds
0 ds=[dx2 + dy?] 2
0 @ = tanldy/dx

T =dR/ds, s distance along curve
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Formulae for curvature

0 Now d?y
dx?
de/ dx = —9X—
1+
dx

- | _ay 2
and ds/dx = 1+(dx)

do/d dzy 2
_ _ag@lax _ dx
Kk =d@l/ds= =
SO d
ds/ dx [1+(d:</)2]3/2
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Example - circle

0 For thecircle
0s=ab
0@=0+T172
0 soK =dg/ds = db/adb = 1/a

dAN
\_
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L ocal methods of curve segmentation

0 There are also awide variety of heuristic methods
to estimate curvature-like local properties
0 For each point, p, along the curve

0 Find the points k pixels before and after p on the curve
(p™, p*) and then measure 8
o the angle between pp*k and pp™*
o theratio g/t t
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L ocal methods of curve segmentation

0 Similar problems to edge detection
0 what isthe appropriate size for k?

0 how do we combine the curvature estimates at different
scaes?

0 boundary problems near the ends of open curves - not
enough pixelsto look out k in both directions
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Back to smoothing functions

0 To smooth an image using a Gaussian filter we must

0 choose an appropriate value for o, which controls how
quickly the Gaussian falls to near zero

o small o produces filter which drops to near zero quickly - can be
implemented using small digital array of weights

o large o produces afilter which dropsto near zero slowly - will be
implemented using alarger size digital array of weights
0 determine the size weight array needed to adequately
represent that Gaussian

o choose a size for which the values at the edges of the weight array
are 10k aslarge as the center weight

0 weight array needs to be of odd size to allow for symmetry
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Gaussian smoothing

0 To smooth an image using a Gaussian filter we must

0 sample the Gaussian by integrating it over the square pixels of
the array of weights and multiplying by the scale factor to obtain
integer weights

/1'\\
AN
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Gaussian smoothing

0 Because we have truncated the Gaussian the weights
will not sumto 1.0 x scale factor

o in “flat” areas of the image we expect our smoothing filter to
leave the image unchanged

o but if the filter weights do not sum to 1.0 x scale factor, it will
either amplify (> 1.0) or de-amplify the image

o normalize the weight array by dividing each entry by the sum
of the all of the entries

0 convert to integers
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Edge detection by function fitting

0 General approach
0 fit afunction to each neighborhood of the image

0 use the gradient of the function as the digital gradient of
the image neighborhood
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Edge detection by function fitting

0 Example: fit aplane to a 2x2 neighborhood
0 z=ax+by+c; zisgray level - need to determine a,b,c
0 gradient isthen (& + b?)12
0 neighborhood points are f(x,y), f(x+1,y), f(x,y+1) and
f(x+1,y+1)

0 Needto minimize 11
E(a,b,c)= ZZ[a(X +i) +b(y+j)+c— f(x+i,y+))I*

0 Solvethisand similar problems by:

0 differentiating with respect to a,b,c, setting resultsto 0,
and

0 solving for a,b,c in resulting system of equations
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Edge detection by function fitting

E/  a=232[a(x+i) + b(y+)) + C - f(x+i,y+))](X+i)
B/ b=232[a(x+) + b(y+]) + ¢ - f(x+i,y+))](y+])
E/  c=232[a(x+i) + b(y+)) + C - f(x+i,y+))]

It is easy to verify that

a=[f(x+1y) + f(x+1,y+1) - f(x,y) - f(x,y+1)]/2

b =[f(x,y+1) + f(x+1,y+1) - f(x,y) - f(x+1,y)]/2

0 aand b are the x and y partial derivatives

O 0o o O

a= 11 b= 11
11 1 -1
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Edge detection by function fitting

0 Could also fit ahigher order surface than a plane

0 with a second order surface we could find the (linear)
combination of pixel valuesthat corresponds to the
higher order derivatives, which can also be used for
edge detection

0 Would ordinarily use aneighborhood larger than
2X2
0 better fit

0 for high degree functions need more points for the fit to
be reliable.
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