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Edge and local feature detection

� Gradient based edge detection
� Edge detection by function fitting
� Second derivative edge detectors
� Corner detection 
� Color edge detection 
� Edge linking and the construction of the chain 

graph

Edge and local feature detection - 2 Zoran Duric

Importance of edge detection in computer 
vision

� Information reduction
� replace image by a cartoon in which objects and surface 

markings are outlined
� these are the most informative parts of the image

� Biological plausibility
� initial stages of mammalian vision systems involve 

detection of edges and local features
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1-D edge detection

� An ideal edge is a step function
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1-D edge detection

� The first derivative of I(x) has a peak at the edge
� The second derivative of I(x) has a zero crossing

at the edge
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1-D edge detection

� More realistically, image edges are blurred and 
the regions that meet at those edges have noise or 
variations in intensity.
� blur - high first derivatives near edges
� noise - high first derivatives within regions that meet at 

edges
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Edge detection in 2-D

� Let f(x,y) be the image intensity function.  It has 
derivatives in all directions
� the gradient is a vector pointing in the direction in which the 

first derivative is highest, and whose length is the magnitude 
of the first derivative in that direction.

� If f is continuous and differentiable, then its gradient 
can be determined from the directional derivatives in 
any two orthogonal directions - standard to use x and y
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Math Refresher: Vectors and Derivatives

O x

y

x0

y=f(x)

θ

f’(x)=df/dx=tanθ Partial derivatives: ∂f/∂x, ∂f/∂y
[∂f(x,y)/∂x|y=y0=f’(x,y0)]

Gradient:
∇ f(x,y)= i∂f/∂x + j∂f/∂y

[i,j – unit vectors in x,y directions]

y

xO

f(x,y)

∇ f(x0,y0)
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Math Refresher: Vectors and Derivatives (cont.)

a
b

ca

c=a+b
a=c−b

x

y

iδx

jδy d

d=iδx+jδy

α
e

f

f=ix1+jy1, e=ix2+jy2
Inner product:
f·e =x1x2+y1y2 =|f|⋅⋅⋅⋅|e|cosα

|f|cosα

Directional derivative:    ∂f/∂n = ∇ f·n
a=ix1+jy1, b=ix2+jy2
c=a+b=i(x1+x2)+j(y1+y2)
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Edge detection in 2-D

� With a digital image, the partial derivatives 
are replaced by finite differences:
� ∆xf = f(x,y) - f(x-1, y)
� ∆yf = f(x,y) - f(x, y-1)

� Alternatives are (much better):
� ∆2xf = 0.5*(f(x+1,y) - f(x-1,y))
� ∆2yf = 0.5*(f(x,y+1) - f(x,y-1))

� Robert’s gradient
� ∆+f = f(x+1,y+1) - f(x,y)
� ∆-f = f(x,y+1) - f(x+1, y)

0   1
-1  0

1   0
0  -1
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Edge Detection in 2-D

� Sobel mask (gradient):
� fx = [f(x+1,y–1)+2f(x+1,y)+f(x+1,y+1) –

f(x–1,y–1) – 2f(x–1,y) – f (x–1,y+1)]/16

� fy = [f(x+1,y+1)+2f(x,y+1)+f(x–1,y+1) –
f(x+1,y–1) – 2f(x1,y–1) – f (x–1,y–1)]/16

–1  –2 –1                              –1    0   1

16fx ~ 0    0   0                16fx ~   –2    0   2
1    2   1                              –1    0   1
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Edge detection in 2-D

� How do we combine the directional derivatives to 
compute the gradient magnitude?
� use the root mean square (RMS) as in the continuous case
� take the maximum absolute value of the directional derivatives
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Combining smoothing and differentiation -
fixed scale

� Local operators like the Roberts give high 
responses to any intensity variation
� local surface texture 

� If the picture is first smoothed by an averaging 
process, then these local variations are removed 
and what remains are the “prominent” edges
� smoothing is blurring, and details are removed

� Example f2x2(x,y) = 1/4[f(x,y) + f(x+1,y) + f(x,y+1) + f(x+1,y+1)]
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Smoothing - basic problems

� What function should be used to smooth or 
average the image before differentiation?
� box filters or uniform smoothing

� easy to compute
� for large smoothing neighborhoods assigns too much weight to 

points far from an edge

� Gaussian, or exponential, smoothing 
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Smoothing and convolution

� The convolution of two functions, f(x) and g(x) is 
defined as

� When the functions f and g are discrete and when 
g is nonzero only over a finite range [-n,n] then 
this integral is replaced by the following 
summation:

h(x) = g(x' ) f (x − x' )dx'
−∞

∞

∫ = g(x) ∗ f (x)

h(i) = g( j) f (i + j)
j=−n

n

∑
f

g
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Example of 1-d convolution

8    7     8    22    23  12   10   11    9    5    6     4

1      3     5    3     11/13

12

1      3     5    3     1

17

1      3     5    3     1

18

f

g

h

h(4) = g( j) f (4+ j)
j=−2

2

∑

= g(−2) f (2)+ g(−1) f (3)+ g(0) f (4) + g(1) f (5) + g(2) f (6)

1     2     3     4     5     6
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Smoothing and convolution

� These integrals and summations extend simply to 
functions of two variables:

� Convolution computes the weighted sum of the gray 
levels in each nxn neighborhood of the image, f, using 
the matrix of weights g.

� Convolution is a so-called linear operator because
� g*(af1 + bf2) = a(g*f1) + b(g*f2)

h(i, j) = f (i, j)∗ g = g(k, l) f (i + k, j + l)
l=−n

n

∑
k= −n

n

∑
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2-D convolution

h(5,5) = g(k,l) f (5 + k,5+ l)
l= −1

1

∑
k=−1

1

∑

= g(−1,−1) f (4,4)+ g(−1,0) f (4,5) + g(−1,1) f (4, 4)
+g(0,−1) f (5,4) + g(0,0) f (5,5)+ g(0,1) f (5,6)
+g(1,−1) f (6,4)+ g(1,0) f (6,5)+ g(1,1) f (6,6)
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Smoothing and convolution
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Gaussian smoothing

� Advantages of Gaussian filtering
� rotationally symmetric (for large filters)
� filter weights decrease monotonically from central 

peak, giving most weight to central pixels
� Simple and intuitive relationship between size of σ and 

size of objects whose edges will be detected in image.
� The gaussian is separable:
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Advantage of separability

� First convolve the image with a one dimensional 
horizontal filter

� Then convolve the result of the first convolution 
with a one dimensional vertical filter

� For a k×k Gaussian filter, 2D convolution requires 
k2 operations per pixel

� But using the separable filters, we reduce this to 
2k operations per pixel.
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Separability

2      3    3

3     5     5

4     4     6

1    2     1

1

2
1

18

11

18

18

11

18
65

1    2     11

2
1

1     2     1

2     4     2

1    2     1

2      3    3

3     5     5

4     4     6

=2 + 6 + 3 = 11

= 6 + 20 + 10 = 36

= 4 + 8 + 6 = 18

65

=

x
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Advantages of Gaussians

� Convolution of a Gaussian with itself is another
Gaussian
� so we can first smooth an image with a small Gaussian
� then, we convolve that smoothed image with another 

small Gaussian and the result is equivalent to smoother 
the original image with a larger Gaussian.

� If we smooth an image with a Gaussian having sd σ
twice, then we get the same result as smoothing the 
image with a Gaussian having standard deviation   
(2σ)1/2
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Use binomial filters as 
approximations of Gaussians

Filter
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

σ2= p/4
1/4
1/2
3/4
1

5/4
3/2
7/4
2

Faster computations, integer operations

p (order)
1
2
3
4
5
6
7
8

f (coeff.)
1/2
1/4
1/8

1/16
1/32
1/64

1/128
1/256
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Combining smoothing and differentiation -
fixed scale

� Non-maxima suppression - Retain a point as an 
edge point if:
� its gradient magnitude is higher than a threshold
� its gradient magnitude is a local maxima in the gradient 

direction
simple thresholding will
compute thick edges
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Non-maxima suppression

Simple cases:
fx=0, fy≠0  // vertical edge
fx≠0, fy=0  // horizontal edge
|fx|=|fy|      // diagonal edge
m(x,y)=||∇ f(x,y)||=((fx)2+(fy)2)1/2

Example:
fx=fy, fx>0, fy>0 
Keep (x,y) if 
m(x,y)≥m(x’,y’) & m(x,y)>m(x’’,y’’)

Messy cases: all other edges

(x’,y’)

(x,y)

(x’’,y’’)
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Messy cases: Edge interpolation

fy

fx

a

b

∇ f =ifx + jfy ;  a+b=1
m(x,y)=||∇ f(x,y)||=((fx)2+(fy)2)1/2

m(x’,y’)=bm(x+1,y)+am(x+1,y+1)
a=fy/fx,   b=1–fy/fx
Multiply everything by fx;
fx*m(x’,y’)=(fx-fy)m(x+1,y)+fym(x+1,y+1)
Similarly: m(x’’,y’’) [(x-1,y-1) & (x-1,y)]

Keep (x,y) if 
m(x,y)≥m(x’,y’) & m(x,y)>m(x’’,y’’)

(x’,y’)

(x,y) (x+1,y)

(x+1,y+1)
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Summary of basic edge detection steps

� Smooth the image to reduce the effects of local 
intensity variations
� choice of smoothing operator practically important

� Differentiate the smoothed image using a digital 
gradient operator that assigns a magnitude and 
direction of the gradient at each pixel

� Threshold the gradient magnitude to eliminate low 
contrast edges
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Summary of basic edge detection steps

� Apply a non-maxima suppression step to thin the 
edges to single pixel wide edges
� the smoothing will produce an image in which the 

contrast at an edge is spread out in the neighborhood of 
the edge

� thresholding operation will produce thick edges
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The scale-space problem

� Usually, any single choice of σ does not produce a good 
edge map
� a large σ will produce edges form only the largest objects, and 

they will not accurately delineate the object because the 
smoothing reduces shape detail

� a small σ will produce many edges and very jagged boundaries of 
many objects.

� Scale-space approaches
� detect edges at a range of scales [σ1, σ2]
� combine the resulting edge maps

� trace edges detected using large σ down through scale space to obtain more 
accurate spatial localization.
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Examples

Gear image 3x3 Gradient magnitude
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Examples

High threshold
Medium threshold
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Examples

low threshold
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Examples

Smoothed 5x5 Gaussian 3x3 gradient magnitude
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Examples
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Examples

smoothed 15x15 Gaussian 3x3 gradient magnitude
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Examples
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Gray Level Human Image
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Laplacian edge detectors

� Directional second derivative in direction of gradient has a 
zero crossing at gradient maxima

� Can “approximate” directional second derivative with
Laplacian

� Its digital approximation is
� ∇ 2f(x,y) = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4 

f(x,y)
=   [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] + 

[f(x,y+1)-f(x,y)] - [f(x,y) - f(x,y-1)]

0   1   0
1   -4  1
0   1   0
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2

2
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Laplacian edge detectors

� Laplacians are also combined with smoothing for 
edge detectors
� Take the Laplacian of a Gaussian smoothed image -

called the Mexican Hat operator or DoG (Difference of
Gaussians)

� Locate the zero-crossing of the operator
� these are pixels whose DoG is positive and which have 

neighbor’s whose DoG is negative or zero

� Usually, measure the gradient or directional first 
derivatives at these points to eliminate low contrast 
edges.
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Laplacian of Gaussian or “Mexican Hat”
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Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of
Gaussian

Zero crossings
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Laplacian of Gaussian

13 x 13 Mexican hat zero crossings
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Edge linking and following

� Group edge pixels into chains and chains into 
large pieces of object boundary.
� can use the shapes of long edge chains in recognition

� slopes
� curvature
� corners
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Edge linking and following

� Basic steps
� thin connected components of edges to one pixel thick
� find simply connected paths
� link them at corners into a graph model of image 

contours
� optionally introduce additional corners on interiors of simple 

paths

� compute local and global properties of contours and 
corners



Edge and local feature detection - 45 Zoran Duric

Finding simply connected chains

� Goal:  create a graph structured representation 
(chain graph)  of the image contours
� vertex for each junction in the image
� edge connecting vertices corresponding to junctions 

that are connected by a chain;  edge labeled with chain 
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Creating the chain graph

� Algorithm: given binary image, E,  of thinned 
edges
� create a binary image, J,  of junctions and end points

� points in E  that are 1 and have more than two neighbors that 
are 1 or exactly one neighbor that is a 1

� create the image E-J = C(chains)
� this image contains the chains of E, but they are broken at 

junctions
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Creating the chain graph

� Perform a connected component analysis of C. For each 
component store in a table T:

� its end points (0 or 2)
� the list of coordinates joining its end points

� For each point in J:
� create a node in the chain graph , G, with a unique label
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Creating the chain graph

� For each chain in C
� if that chain is a closed loop (has no end points)

� choose one point from the chain randomly and create a new 
node in G corresponding to that point

� mark that point as a “loop junction” to distinguish it from other 
junctions

� create an edge in G connecting this new node to itself, and 
mark that edge with the name of the chain loop

� if that chain is not a closed loop, then it has two end 
points

� create an edge in G linking the two points from J adjacent to 
its end points
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Creating the chain graph

� Data structure for creating the chain graph
� Biggest problem is determining for each open 

chain in C the points in J that are adjacent to its 
end points
� create image J in which all 1’s are marked with their 

unique labels.
� For each chain in C

� Examine the 3x3 neighborhood of each  end point of C in J
� Find the name of the junction or end point adjacent to that end 

point from this 3x3 neighborhood. 
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Finding internal “corners” of chains

� Chains are only broken at junctions
� but important features of the chain might occur at 

internal points
� example: closed loop corresponding to a square - would 

like to find the natural corners of the square and add 
them as junctions to the chain graph (splitting the 
chains at those natural corners)

� Curve segmentation
� similar to image segmentation, but in a 1-D form

� local methods, like edge detectors
� global methods, like region analyzers
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Local methods of curve segmentation

� Natural locations to segment contours are points where the 
slope of the curve is changing quickly
� these correspond, perceptually, to “corners” of the curve.

� To measure the change in slope we are measuring the 
curvature of the curve
� straight line has 0 curvature
� circular arc has constant curvature corresponding to 1/r
� Can estimate curvature by fitting a simple function (circular arc, 

quadratic function, cubic function) to each neighborhood of a 
chain, and using the parameters of the fit to estimate the 
curvature at the center of the neighborhood.
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Formulae for curvature

� Consider moving a point, P, along a curve.
� Let T be the unit tangent vector as P moves

� T has constant length (1)
� but the direction of T, φ, changes from point to point unless the 

curve is a straight line
� measure this direction as the angle between T and the x-axis

R

P

T = dR / ds, s distance along curve

φ
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Formulae for curvature

� The curvature, κ, is the instantaneous rate of 
change of φ with respect to s, distance along the 
curve
� κ = dφ / ds
� ds = [dx2 + dy2]1/2

� φ= tan-1dy/dx

R

P

T = dR / ds, s distance along curve

φ
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Formulae for curvature

� Now

and

so

dφ/ dx =

d 2 y
dx2

1+ (dy
dx

)2

ds / dx = 1+ (
dy
dx

)2

κ = dφ/ ds =
dφ/ dx
ds / dx

=
d 2 y

dx2

[1+ (dy
dx

)2 ]3 / 2
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Example - circle

� For the circle
� s = aθ
� φ = θ + π/2
� so κ = dφ/ds = dθ/adθ = 1/a

a

θ s φ
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Local methods of curve segmentation

� There are also a wide variety of heuristic methods 
to estimate curvature-like local properties
� For each point, p , along the curve
� Find the points k pixels before and after p on the curve 

(p+k, p-k) and then measure 
� the angle between pp+k and pp-k

� the ratio s/t

k
k

t
s

θ
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Local methods of curve segmentation

� Similar problems to edge detection
� what is the appropriate size for k?
� how do we combine the curvature estimates at different 

scales?
� boundary problems near the ends of open curves - not 

enough pixels to look out k in both directions
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Back to smoothing functions

� To smooth an image using a Gaussian filter we must
� choose an appropriate value for σ, which controls how 

quickly the Gaussian falls to near zero
� small σ produces filter which drops to near zero quickly - can be 

implemented using small digital array of weights
� large σ produces a filter which drops to near zero slowly - will be 

implemented using a larger size digital array of weights

� determine the size weight array needed to adequately 
represent that Gaussian

� choose a size for which the values at the edges of the weight array 
are 10-k as large as the center weight

� weight array needs to be of odd size to allow for symmetry
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Gaussian smoothing

� To smooth an image using a Gaussian filter we must
� sample the Gaussian by integrating it over the square pixels of 

the array of weights and multiplying by the scale factor to obtain 
integer weights
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Gaussian smoothing

� Because we have truncated the Gaussian the weights 
will not sum to 1.0 x scale factor

� in “flat” areas of the image we expect our smoothing filter to 
leave the image unchanged

� but if the filter weights do not sum to 1.0 x scale factor,  it will 
either amplify (> 1.0) or de-amplify the image

� normalize the weight array by dividing each entry by the sum 
of the all of the entries

� convert to integers
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Use binomial filters as 
approximations of Gaussians

Filter
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

σ2= p/4
1/4
1/2
3/4
1

5/4
3/2
7/4
2

Faster computations, integer operations

p (order)
1
2
3
4
5
6
7
8

f (coeff.)
1/2
1/4
1/8

1/16
1/32
1/64

1/128
1/256
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Edge detection by function fitting

� General approach
� fit a function to each neighborhood of the image
� use the gradient of the function as the digital gradient of 

the image neighborhood
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Edge detection by function fitting

� Example:  fit a plane to a 2x2 neighborhood
� z = ax + by + c; z is gray level - need to determine a,b,c
� gradient is then (a2 + b2)1/2

� neighborhood points are f(x,y), f(x+1,y), f(x,y+1) and 
f(x+1,y+1)

� Need to minimize 

� Solve this and similar problems by:

� differentiating with respect to a,b,c, setting results to 0, 
and

� solving for a,b,c in resulting system of equations

E(a,b,c) = [a(x + i) + b(y + j ) + c − f (x + i, y + j)]2

j=0

1

∑
i=0

1

∑
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Edge detection by function fitting

� ∂E / ∂a = ΣΣ2[a(x+i) + b(y+j) + c - f(x+i,y+j)](x+i)
� ∂E / ∂b = ΣΣ2[a(x+i) + b(y+j) + c - f(x+i,y+j)](y+j)
� ∂E / ∂c = ΣΣ2[a(x+i) + b(y+j) + c - f(x+i,y+j)]
� It is easy to verify that

a = [f(x+1,y) + f(x+1,y+1) - f(x,y) - f(x,y+1)]/2
b = [f(x,y+1) + f(x+1,y+1) - f(x,y) - f(x+1,y)]/2

� a and b are the x and y partial derivatives

-1   1
-1   1

a = b = 1   1
-1  -1
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Edge detection by function fitting

� Could also fit a higher order surface than a plane
� with a second order surface we could find the (linear) 

combination of pixel values that corresponds to the 
higher order derivatives, which can also be used for 
edge detection

� Would ordinarily use a neighborhood larger than 
2x2
� better fit
� for high degree functions need more points for the fit to 

be reliable.
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Color Edge Detection

� Jacobian J

� Structure matrix S
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Edge strength

� Edge strength at (x,y) is given by

� Edge strength does not depend on the coordinate 
system; it is possible to rotate the coordinate system 
to make the elements that are not on the main 
diagonal zero

222222)( yyyxxx bgrbgrStrace +++++=
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Eigenvalues of S

� Solve
Sx = λx, λ scalar is an eigenvalue of S,

x=(x1 x2)T

� For nontrivial solution (x≠0)
det(S–λI)=0   ⇔ (a – λ)*(c – λ) – c2=0 

( ))(4)()(
2
1 22

2,1 acbcaca −−+±+=λ

2λ should be 0
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Eigenvectors of S

(a – λ1)x + by = 0
bx + (c – λ1) = 0
Set y = 1, (a – λ1)x  = – by = – b
If (a – λ1) ≠ 0 (edge not horizontal or vertical, x=1 otherwise)

x = – b/(a – λ1)
Normalize to get edge direction:
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Edge strength and direction

� Edge strength
(λ1)1/2    the larger eigenvalue of S

� Edge gradient direction, the corresponding eigenvector e
� Can apply non-maxima suppression now

(λ1)1/2

e
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Example
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Color edges
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Non-maximum suppression results

Yellow middle:
maximum
gradient edges
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Application: Edge-based background subtraction

� “Learn” background edges (mean values and 
standard deviations of horizontal and vertical 
edges/derivatives)

� Subtract the background image from a new image
� Mark a point as a foreground if the difference is 

significant (should be as large as the larger of the 
background and the new image values) 
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Edge-based moving object detection

color edge
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Background Subtraction: Edge Classification

Occluding edges:
edges of objects that 
have entered the scene

Occluded edges:
background edges that 
have been occluded by 
objects

Background edges: (not 
shown): edges that 
have not changed
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Building Contours through Sampling

� Extract the boundary by background subtraction
� Randomly sample points near the boundary and 

link them using simple search
� Resample and rebuild if edges are weak
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Improvements: Building contours through sampling


