Edge and local feature detection

7 Gradient based edge detection

7 Edge detection by function fitting
7 Second derivative edge detectors
7 Corner detection

7 Color edge detection

7 Edge linking and the construction of the chain
graph
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Importance of edge detection in computer
vision

7 Information reduction

7 replace image by a cartoon in which objects and surface
markings are outlined

7 these are the most informative parts of the image
7 Biological plausibility
7 1initial stages of mammalian vision systems involve
detection of edges and local features
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1-D edge detection

7 An ideal edge is a step function

I(x)
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1-D edge detection

7 The first derivative of I(x) has a peak at the edge

7 The second derivative of I(x) has a zero crossing
at the edge
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1-D edge detection

7 More realistically, image edges are blurred and
the regions that meet at those edges have noise or
variations in intensity.

7 blur - high first derivatives near edges
7 noise - high first derivatives within regions that meet at

0o | Cdges )

WA
7
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X

Edge detection in 2-D

7 Let f(x,y) be the 1image intensity function. It has
derivatives in all directions
7 the gradient is a vector pointing in the direction in which the
first derivative is highest, and whose length is the magnitude
of the first derivative in that direction.
7 If fis continuous and differentiable, then its gradient
can be determined from the directional derivatives in
any two orthogonal directions - standard to use x and y

. of , of .
—m = [(—) +(—
magnitude = m = [( ax) ( ay) ]
direction =0 = tan™ (—af /ay)
of /ox
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Math Refresher: Vectors and Derivatives

f(x)=df/dx=tan@ Partial derivatives: 0f/dx, df/dy

[Of(x,y)/0x]y=y,=F (X,¥,)]
Gradient:

Of(x,y)= i0f/dx + jof/dy
[i,j — unit vectors in x,y directions]
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Math Refresher: Vectors and Derivatives (cont.)

LA

v

15X |f|cosa5

c=atb d=idx+jdy f=ix 4y, e=ixyHy, X
a=c-b Inner product:

f-e =x;x,t+y,y, =[f|(k|cosa
Directional derivative: df/on = (f'n
a=ix +jy,, b=ix*jy,
c=a+b=i(x;+X,)+j(Y1+Y,)
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Edge detection in 2-D

7 With a digital image, the partial derivatives
are replaced by finite differences:
72 Af=1(xy) - f(x-1,y)
72 Af=1(x,y) - f(x, y-1)
7 Alternatives are (much better):
2 Ay £=0.5%(f(x+1y) - f(x-1,y))
7 By, f = 0.5%(f(x,y+1) - f(x,y-1))

7 Robert’s gradient Ve %0
2 O f=f(x+1,y+1) - f(x,y)
2 Af=1f(x,y+1) - f(x+1,y) ™ (1) -(1)
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Edge Detection in 2-D

7 Sobel mask (gradient):
7 £, = [f(x+1,y-1)+2f(x+1,y)Hix+1,y+1) -
f(x—1,y—-1) - 2f(x-1,y) — f (x-1,y+1)]/16

7 £, = [f(x+Ly+D+2f(x,y+ DH(x-1,y+1) —
f(x+1,y-1) — 2f(x1,y—-1) — f (x—1,y-1)]/16

-1 -2-1 -1 01
16f~ 0 0 0 16~ =2 0 2
121 -1 01
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Edge detection in 2-D

72 How do we combine the directional derivatives to
compute the gradient magnitude?
7 use the root mean square (RMS) as in the continuous case
7 take the maximum absolute value of the directional derivatives
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Combining smoothing and differentiation -
fixed scale

7 Local operators like the Roberts give high
responses to any intensity variation
7 local surface texture
7 If the picture is first smoothed by an averaging
process, then these local variations are removed
and what remains are the “prominent” edges
7 smoothing is blurring, and details are removed

7 Example f,,(x,y) = VA[f(x,y) + f(x+1,y) + fx,y+1) + f(x+1,y+1)]

Edge and local feature detection - 12 Zoran Duric




Smoothing - basic problems

7 What function should be used to smooth or
average the image before differentiation?
7 box filters or uniform smoothing

7 easy to compute

2 for large smoothing neighborhoods assigns too much weight to
points far from an edge

7 Gaussian, or exponential, smoothing

1 ()

e 207
A 2110
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Smoothing and convolution

7 The convolution of two functions, f(x) and g(x) is
defined as

h(x) = [g(x)f(x =x)dx' = g(x) Of (x)

7 When the functions f and g are discrete and when
g is nonzero only over a finite range [-n,n] then
this integral is replaced by the following
summation:

h(i)= D g(i)f(i+j) 5

j==n
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Example of 1-d convolution

f |8|7|8|22| 2112|1o| 11| 9| 5|6|4|

g 113 |1|3| 5|3| 1|

JEEER

HEEER
no L] lsefarfed [ LT L[]
h(4) = 9()f(4+])

j=—2

=9(=2)f(D)+g(=DfB)+9(0)f(4) +g(M)f(5) +9(2)f(6)
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Smoothing and convolution

7 These integrals and summations extend simply to
functions of two variables:

hi.jy=f@.D0g= D D gk Df+kj+1)

k=-nl=-n

7 Convolution computes the weighted sum of the gray
levels in each nxn neighborhood of the image, f, using
the matrix of weights g.

7 Convolution is a so-called linear operator because
7 g*(af) +bf,) = a(g*f)) + b(g*f,)
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2-D convolution

h(5,5) = iig(k,l)f(s +k,5+1)

k=-l=-1
=9(-1,-1)f(4,4)+g(-1,0)f(4,5) +g(-1,1) f(4,4)
+9(0,—-1)f(5,4) +9(0,0)f(5,5)+ g(0,1) f(5,6)
+9(1,-1)f(6,4)+9(1,0)f(6,5)+g(1,1)f(6,6)
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Smoothing and convolution

4.2. LINEAR SYSTEMS 117
1]
A|B|C I {
Py Py | Pl T
D|VE|F Py|Ps | Ps hli. i
TR ARl (i,j]
GlH|I {1~ \“‘

hli,j)=Api+Bpo+Cps + Dpi+ Eps + Fps+Gp:+Hps—Ipy

Edge and local feature detection - 18

Zoran Duric




Gaussian smoothing

7 Advantages of Gaussian filtering
7 rotationally symmetric (for large filters)

7 filter weights decrease monotonically from central
peak, giving most weight to central pixels

7 Simple and intuitive relationship between size of 0 and
size of objects whose edges will be detected in image.

7 The gaussian is separable:
(3+y?) s 2
2 2 2
e 20 =e 207 % e 20
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Advantage of separability

7 First convolve the image with a one dimensional
horizontal filter

7 Then convolve the result of the first convolution
with a one dimensional vertical filter

7 For a kxk Gaussian filter, 2D convolution requires
k2 operations per pixel

7 But using the separable filters, we reduce this to
2k operations per pixel.
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Separability

2 [3]3 11
|1|2|1| 3 [5]5 18
4 |4 |6 18

65

112 |1 2 1313 =2+6+3=11
2 14 |2 31515 =6+20+10=36
102 |1 4 |4 ls =4+8+6=18
65
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Advantages of Gaussians

7 Convolution of a Gaussian with itself is another
Gaussian

7 so we can first smooth an image with a small Gaussian

7 then, we convolve that smoothed image with another
small Gaussian and the result is equivalent to smoother
the original image with a larger Gaussian.

7 If we smooth an image with a Gaussian having sd 0
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation
(20)12
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Use binomial filters as
approximations of Gaussians

Faster computations, integer operations

p (order) f (coeff.) Filter 0= p/4

1 1/2 11 1/4
2 1/4 121 1/2
3 1/8 1331 3/4
4 1/16 14641 1

5 1/32 15101051 5/4
6 1/64 161520156 1 3/2
7 1/128 172135352171 7/4
8 1/256 182856 70 56 28 8 1 2
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Combining smoothing and differentiation -
fixed scale

7 Non-maxima suppression - Retain a point as an
edge point if:
7 its gradient magnitude is higher than a threshold

7 its gradient magnitude is a local maxima in the gradient

direction

simple thresholding will
compute thick edges
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Non-maxima suppression

Simple cases:

., y) §=0, f,#20 // vertical edge
T f,#0, f,=0 /I horizontal edge
If.|=If,|  // diagonal edge

<« >
Y) m(x,y)=[|Cf,y)1=((F)>+(F,)2) "2
| l Example:
x”,y") f=f,, £>0, f,>0
Keep (x,y) if
m(x,y)zm(x,y’) & m(x,y)>m(x”,y")
Messy cases: all other edges
Edge and local feature detection - 25 Zoran Duric

Messy cases: Edge interpolation

Of =if, + jf,; at+b=1

= = 2 2\1/2
el mOWEITYII=ERHR)
- } :f m(x’,y’)=bm(x+1,y)+am(x+1,y+1)
LDy a=fff, b=1-f
00”1 +ly) Multiply everything by f,;
[ P - B o
fx £emK,y)= (e, m(x+1,y)+f,m(x+1,y+1)

Similarly: m(x”,y”) [(x-1,y-1) & (x-1,y)]

Keep (x,y) if
m(x,y)zm(x,y’) & m(x,y)>m(x",y”)

Edge and local feature detection - 26 Zoran Duric




Summary of basic edge detection steps

7 Smooth the image to reduce the effects of local
intensity variations
7 choice of smoothing operator practically important
7 Differentiate the smoothed image using a digital
gradient operator that assigns a magnitude and
direction of the gradient at each pixel

7 Threshold the gradient magnitude to eliminate low
contrast edges
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Summary of basic edge detection steps

7 Apply a non-maxima suppression step to thin the
edges to single pixel wide edges

7 the smoothing will produce an image in which the
contrast at an edge is spread out in the neighborhood of
the edge

7 thresholding operation will produce thick edges
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The scale-space problem

7 Usually, any single choice of 0 does not produce a good
edge map

7 a large 0 will produce edges form only the largest objects, and
they will not accurately delineate the object because the
smoothing reduces shape detail

7 a small 0 will produce many edges and very jagged boundaries of
many objects.
7 Scale-space approaches
7 detect edges at a range of scales [0}, 0,]

7 combine the resulting edge maps

7 trace edges detected using large 0 down through scale space to obtain more
accurate spatial localization.
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Examples

Gear image 3x3 Gradient magnitude
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Examples

. Medium threshold
High threshold
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Examples

low threshold
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Examples

Smoothed 5x5 Gaussian 3x3 gradient magnitude
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Examples
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Examples

smoothed 15x15 Gaussian 3x3 gradient magnitude
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Examples

| Ze»

e

4
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Gray Level Human Image
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Laplacian edge detectors

7 Directional second derivative in direction of gradient has a
zero crossing at gradient maxima

7 Can “approximate” directional second derivative with

Laplacian
0’ 7 Lo f 010
0x® Aﬂ 070
7 Its digital approximation is
2 O(x.y) = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4
f(x.y)
= [f(x+Ly) - f(x,y)] - [f(x,y) - fx-1y)] +
[fx,y+D-f(x,y)] - [f(xy) - f(x,y-1)]
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Laplacian edge detectors

7 Laplacians are also combined with smoothing for
edge detectors

7 Take the Laplacian of a Gaussian smoothed image -
called the Mexican Hat operator or DoG (Difference of
Gaussians)

7 Locate the zero-crossing of the operator

7 these are pixels whose DoG is positive and which have
neighbor’s whose DoG is negative or zero

7 Usually, measure the gradient or directional first
derivatives at these points to eliminate low contrast
edges.
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Laplacian of Gaussian or “Mexican Hat”

03

azr
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Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of
Gaussian

Zero crossings
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Laplacian of Gaussian

13 x 13 Mexican hat

zero crossings
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Edge linking and following

7 Group edge pixels into chains and chains into
large pieces of object boundary.

7 can use the shapes of long edge chains in recognition
2 slopes
7 curvature

2 corners
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Edge linking and following

7 Basic steps
7 thin connected components of edges to one pixel thick
7 find simply connected paths

7 link them at corners into a graph model of image
contours

2 optionally introduce additional corners on interiors of simple
paths

2 compute local and global properties of contours and
corners
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Finding simply connected chains

7 Goal: create a graph structured representation
(chain graph) of the image contours
7 vertex for each junction in the image

7 edge connecting vertices corresponding to junctions
that are connected by a chain; edge labeled with chain

o a
s d
u 9
b
e
Pre e i .
Partial graph
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Creating the chain graph

7 Algorithm: given binary image, E, of thinned
edges

7 create a binary image, J, of junctions and end points

2 points in E that are 1 and have more than two neighbors that
are 1 or exactly one neighbor that is a 1

7 create the image E-J = C(chains)

7 this image contains the chains of E, but they are broken at
junctions
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Creating the chain graph

7 Perform a connected component analysis of C. For each
component store in a table T:
7 its end points (0 or 2)
7 the list of coordinates joining its end points
7 For each point in J:
2 create a node in the chain graph , G, with a unique label
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Creating the chain graph

7 For each chain in C

7 if that chain is a closed loop (has no end points)

2 choose one point from the chain randomly and create a new
node in G corresponding to that point

2 mark that point as a “loop junction” to distinguish it from other
junctions

2 create an edge in G connecting this new node to itself, and
mark that edge with the name of the chain loop
7 if that chain is not a closed loop, then it has two end
points
2 create an edge in G linking the two points from J adjacent to
its end points
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Creating the chain graph

7 Data structure for creating the chain graph

7 Biggest problem is determining for each open
chain in C the points in J that are adjacent to its
end points

7 create image J in which all 1°s are marked with their
unique labels.
7 For each chain in C
2 Examine the 3x3 neighborhood of each end point of C inJ

2 Find the name of the junction or end point adjacent to that end
point from this 3x3 neighborhood.
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Finding internal “corners” of chains

7 Chains are only broken at junctions

7 but important features of the chain might occur at
internal points

7 example: closed loop corresponding to a square - would
like to find the natural corners of the square and add
them as junctions to the chain graph (splitting the
chains at those natural corners)

7 Curve segmentation

7 similar to image segmentation, but in a 1-D form
7 local methods, like edge detectors
2 global methods, like region analyzers
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Local methods of curve segmentation

7 Natural locations to segment contours are points where the
slope of the curve is changing quickly
7 these correspond, perceptually, to “corners” of the curve.

7 To measure the change in slope we are measuring the
curvature of the curve
7 straight line has 0 curvature
7 circular arc has constant curvature corresponding to 1/r

7 Can estimate curvature by fitting a simple function (circular arc,
quadratic function, cubic function) to each neighborhood of a
chain, and using the parameters of the fit to estimate the
curvature at the center of the neighborhood.
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Formulae for curvature

7 Consider moving a point, P, along a curve.

7 Let T be the unit tangent vector as P moves
2 T has constant length (1)

2 but the direction of T, @, changes from point to point unless the
curve is a straight line

2 measure this direction as the angle between T and the x-axis
T=dR/ds, s distance along curve
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Formulae for curvature

curve
72 K=d@/ds
7 ds = [dx? + dy?]"/?
2 @= tan"!dy/dx

7 The curvature, K, 1s the instantaneous rate of
change of @ with respect to s, distance along the

T=dR/ds, s distance along curve
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Formulae for curvature

7 Now d’y
2
dg/ dx = d’(‘jyz
1+
(dx)
_ dy .
and ds/dx = 1+(dx)
do/d dz%
Kk =dg/ds = prox dx
SO

- d
ds/dx [1+(d_y)2]3/2
X
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Example - circle

7 For the circle
7 s=ab
2@0=0+T11/2
7 so K=d@/ds=d6/adb=1/a

dAN
\
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Local methods of curve segmentation

7 There are also a wide variety of heuristic methods
to estimate curvature-like local properties
7 For each point, p , along the curve

7 Find the points k pixels before and after p on the curve
(p™*, p’*) and then measure 8
7 the angle between pp™* and pp*
7 the ratio s/t t
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Local methods of curve segmentation

7 Similar problems to edge detection
7 what is the appropriate size for k?

72 how do we combine the curvature estimates at different
scales?

7 boundary problems near the ends of open curves - not
enough pixels to look out k in both directions
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Back to smoothing functions

7 To smooth an image using a Gaussian filter we must

7 choose an appropriate value for 0, which controls how
quickly the Gaussian falls to near zero

2 small 0 produces filter which drops to near zero quickly - can be
implemented using small digital array of weights

2 large 0 produces a filter which drops to near zero slowly - will be
implemented using a larger size digital array of weights
7 determine the size weight array needed to adequately
represent that Gaussian

7 choose a size for which the values at the edges of the weight array
are 10 as large as the center weight

7 weight array needs to be of odd size to allow for symmetry
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Gaussian smoothing

7 To smooth an image using a Gaussian filter we must

7 sample the Gaussian by integrating it over the square pixels of
the array of weights and multiplying by the scale factor to obtain
integer weights

/ﬁ'\\
/ N
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Gaussian smoothing

7 Because we have truncated the Gaussian the weights
will not sum to 1.0 x scale factor

7 in “flat” areas of the image we expect our smoothing filter to
leave the image unchanged

2 but if the filter weights do not sum to 1.0 x scale factor, it will
either amplify (> 1.0) or de-amplify the image

2 normalize the weight array by dividing each entry by the sum
of the all of the entries

2 convert to integers
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Use binomial filters as
approximations of Gaussians

Faster computations, integer operations

p (order) f (coeff.) Filter 0= p/4

1 1/2 11 1/4
2 1/4 121 1/2
3 1/8 1331 3/4
4 1/16 14641 1

5 1/32 15101051 5/4
6 1/64 161520156 1 3/2
7 1/128 172135352171 7/4
8 1/256 182856 70 56 28 8 1 2
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Edge detection by function fitting

7 General approach
7 fit a function to each neighborhood of the image

7 use the gradient of the function as the digital gradient of
the image neighborhood
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Edge detection by function fitting

7 Example: fit a plane to a 2x2 neighborhood
72 z=ax + by + ¢; z is gray level - need to determine a,b,c
7 gradient is then (a? + b?)!2
7 neighborhood points are f(x,y), f(x+1,y), f(x,y+1) and
f(x+1,y+1)
7 Need to minimize

E(a,b,c)= zllzll[a(x +i)+b(y+j)+c— f(x +i,y+ )]

i=0 j=0
7 Solve this and similar problems by:

7 differentiating with respect to a,b,c, setting results to 0,
and

7 solving for a,b,c in resulting system of equations
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Edge detection by function fitting

OE / 0a = 23 2[a(x+i) + b(y+j) + ¢ - f(x+1,y+))](x+1)
OE / 0b = 23 2[a(x+i) + b(y+)) + ¢ - f(x+i,y+))](y+))
OE / 0c = 22 2[a(x+i) + b(y+j) + ¢ - f(x+i,y+))]
It is easy to verify that

a=[f(x+1,y) + f(x+1,y+1) - f(x,y) - f(x,y+1)]/2

b = [f(x,y+1) + f(x+1,y+1) - f(x,y) - f(x+1,y)]/2
a and b are the x and y partial derivatives

NN N N

N
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Edge detection by function fitting

7 Could also fit a higher order surface than a plane

7 with a second order surface we could find the (linear)
combination of pixel values that corresponds to the
higher order derivatives, which can also be used for
edge detection

7 Would ordinarily use a neighborhood larger than
2x2
7 better fit

7 for high degree functions need more points for the fit to
be reliable.
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Color Edge Detection

7 Jacobian J

I, ry
J=9, 0,
b, b,
7 Structure matrix S
2 2 2
rx +gx +bx rxry-l_gxgy-i-bxby

S=J"J= s
T, + 0,9, *bb, ry+9,+D,
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Edge strength

7 Edge strength at (x,y) is given by
— 2 2 L R2 42 2 L2
trace(S)=r, +g, +b, +r, +g, +b,

7 Edge strength does not depend on the coordinate
system; it is possible to rotate the coordinate system
to make the elements that are not on the main
diagonal zero

a b A 0
S = -~ S'=
b ¢ 0 A,
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Eigenvalues of S

72 Solve
SX = AX, A scalar is an eigenvalue of S,
X=(Xy X,)"
7 For nontrivial solution (x#0)
det(S-AD=0 = (a-A)*(c—-A)-c*=0

A :%((awc)i\/(aﬂ:)2 —4(b? —ac))

A, should be 0
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Eigenvectors of S

@-A)x+by=20

bx+(c-A) =0

Sety=1,(@-A)x =-by=-b

If@a-A 1) Z (0 (edge not horizontal or vertical, x=1 otherwise)
=—blla-A,)

Normalize to get edge direction:

o= X 1 ]
U +1 A +1
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Edge strength and direction

7 Edge strength
(A)Y? the larger eigenvalue of S

7 Edge gradient direction, the corresponding eigenvector e
7 Can apply non-maxima suppression now

(Al)I/Z
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Example

Edge and local feature detection - 71

Zoran Duric

Color edges
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Non-maximum suppression results

Yellow middle:
maximum
gradient edges
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Application: Edge-based background subtraction

7 “Learn” background edges (mean values and
standard deviations of horizontal and vertical
edges/derivatives)

7 Subtract the background image from a new image

7 Mark a point as a foreground if the difference is
significant (should be as large as the larger of the
background and the new image values)
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Edge-based moving object detection

color edge
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Background Subtraction: Edge Classification

Occluding edges:

edges of objects that
have entered the scene

background edges that
have been occluded by
objects

Background edges: (not
shown): edges that
have not changed
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Building Contours through Sampling

7 Extract the boundary by background subtraction

7 Randomly sample points near the boundary and
link them using simple search

7 Resample and rebuild if edges are weak
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Improvements: Building contours through sampling
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