
Image-based matching- 1 Zoran Duric

Matching and Tracking

➤ Goal: develop matching procedures that can recognize and
track objects when

➤ objects are partially occluded

➤ image cannot be segmented by thresholding

➤ Key questions:
➤ How do we represent the appearance of an object?

➤ How do we match these representations against an image?

Image-based matching- 2 Zoran Duric

Solution 1: Image correlation

➤ Given:
➤ n x n image, M, of an object of interest. This is called a template and is

our representation of the appearance of the object.

➤ n x n image, N, that possibly contains that object (usually a window of a
larger image)

➤ Goal: Develop functions that compare M and N and
measure the similarity of M and N

➤ sum of squared differences:

➤ correlation:

SSD = [M(i, j) − N(i, j)]2

j =1

n

∑
i=1

n

∑

C =
M(i, j)N(i, j)

j =1

n

∑
i =1

n

∑

[M(i, j)2 N (i, j)2]1/ 2

j =1

n

∑
i =1

n

∑
j =1

n

∑
i =1

n

∑

Image-based matching- 3 Zoran Duric

Image correlation

➤ This correlation measure takes on values in the range [0,1]
➤ it is 1 if and only if N = cM for some constant c

➤ so N can be uniformly brighter or darker than the template, M, and the
correlation will still be high.

➤ the SSD is sensitive to these differences in overall brightness

➤ The first term in the denominator, ΣΣM 2 depends only on the template,
and can be ignored

➤ The second term in the denominator, ΣΣN2 can be eliminated if we first
normalize the grey levels of N so that their total value is the same as that
of M - just scale each pixel in N by ΣΣM/ΣΣN

➤ practically, this step is sometimes ignored, or M is scaled to have
average grey level of the big image from which the unknown images,
N, are drawn.

Image-based matching- 4 Zoran Duric

Image correlation

➤ Suppose that M(i,j) = cN(i,j)

C =
M(i, j)N(i, j)

j =1

n

∑
i =1

n

∑

[M(i, j)2 N(i, j)2]1/ 2

j =1

n

∑
i =1

n

∑
j =1

n

∑
i =1

n

∑

=
cN(i, j)N(i, j)

j =1

n

∑
i =1

n

∑

[c2 N(i, j)2 N(i, j)2]1/ 2

j =1

n

∑
i =1

n

∑
j =1

n

∑
i =1

n

∑

=
c N(i, j)2

j =1

n

∑
i=1

n

∑

c[N(i, j)2 N(i, j)2]1/ 2

j =1

n

∑
i =1

n

∑
j =1

n

∑
i =1

n

∑
= 1

Image-based matching- 5 Zoran Duric

Image correlation

➤ Alternatively, we can rescale both M and N to have unit
total intensity

➤ N’(i,j) = N(i,j)// ΣΣN

➤ M’(i,j) = M(i,j)/ ΣΣM

➤ Now, we can view these new images, M’ and N’ as unit
vectors of length n2.

➤ The correlation measure ΣΣM’(i,j)N’(i,j) is the familiar dot
product between the two n2 vectors M’ and N’

➤ recall that the dot product is the cosine of the angle between the two
vectors

➤ it is equal to 1 when the vectors are the same vector, or the normalized
images are identical

➤ These are BIG vectors

Image-based matching- 6 Zoran Duric

Reducing the computational cost of
correlation matching

➤ A number of factors lead to large costs in correlation
matching:

➤ the image N is much larger than the template M, so we have to perform
correlation matching of M against every nxn window of N

➤ we might have many templates, Mi, that we have to compare against a
given image N

➤ face recognition - have a face template for every known face; this
might easily be tens of thousands

➤ character recognition - template for each character

➤ we might not know the orientation of the template in the image

➤ template might be rotated in the image N - example: someone tilts
their head for a photograph

➤ would then have to perform correlation of rotated versions of M
against N

Image-based matching- 7 Zoran Duric

Reducing the computational cost of
correlation matching

➤ A number of factors lead to large costs in correlation
matching:

➤ we might not know the scale, or size, of the template in the unknown
image

➤ the distance of the camera from the object might only be known
approximately

➤ would then have to perform correlation of scaled versions of M against N

Image-based matching- 8 Zoran Duric

Template matching

Database

Position
Orientation
Scale

New image

a

Image-based matching- 9 Zoran Duric

Reducing the cost of template matching

➤ Reducing the number of image windows that need to be
compared against the database

➤ find “objects” in the image

➤ Reducing the number of database objects that need to be
matched against any window

➤ index templates by features such as moments that are not changed by
rotations and scale changes

➤ measure moments of candidate windows

➤ only match “similar” templates

➤ Reducing the number of operations needed to match a
given template to the image

Image-based matching- 10 Zoran Duric

Reducing the computational cost of
correlation matching

➤ Two basic techniques for reducing the number of
operations associated with correlation

➤ reduce the number of pixels in M and N

➤ multi-resolution image representations

➤ principal component or “feature selection” reductions

➤ match a subset of M against a subset of N

➤ random subsets

➤ boundary subsets - edge correlation

Image-based matching- 11 Zoran Duric

Multi-resolution correlation

➤ Multi-resolution template matching
➤ reduce resolution of both template and image by creating an image

pyramid
➤ match small template against small image

➤ identify locations of strong matches

➤ expand the image and template, and match higher resolution template
selectively to higher resolution image

➤ iterate on higher and higher resolution images

➤ Issue:
➤ how to choose detection thresholds at each level

➤ too low will lead to too much cost

➤ too high will miss match

Image-based matching- 12 Zoran Duric

Image pyramids

➤ Base of the pyramid, level 0, is the full resolution image -
say 2n x 2n

➤ Level i of the pyramid is obtained from level i-1 as follows
➤ partition level i-1 into non-overlapping 2k x 2k blocks

➤ typically, k = 1 or 2

➤ compute an average grey level in each of these blocks

➤ unweighted average

➤ Gaussian weighted average more typical

➤ assign that average grey level to the corresponding level i pixel

➤ For you to think about: How many pixels are there in
an image pyramid having an nxn base and a reduction
by neighborhoods of size 2k x 2 k ?

Image-based matching- 13 Zoran Duric

Example

8 7 8 12 10

13 12 7 6

30 32 34 30

32 26 28 33

8

30 31

20

Image-based matching- 14 Zoran Duric

Subset matching techniques

➤ Subtemplate/template matching
➤ choose a subset of the template

➤ match it against the image

➤ compare the remainder of the template at positions of high match

➤ can add pieces of the template iteratively in a multistage approach

➤ Key issues:
➤ what piece(s) to choose?

➤ want pieces that are rare in the images against which we will perform
correlation matching so that non-match locations are identified
quickly

➤ choose pieces that define the geometry of the object

➤ how to choose detection thresholds at each stage

Image-based matching- 15 Zoran Duric

Subset matching methods - edge correlation

➤ Reduce both M and N to edge maps
➤ binary images containing “1” where edges are present and “0” elsewhere

➤ associated with each “1” in the edge map we can associate

➤ location (implicitly)

➤ orientation from the edge detection process

➤ color on the “inside” of the edge for the model,M, and on both sides of
the edge for the image, N,

Image N

Template M

Image-based matching- 16 Zoran Duric

Edge template matching

➤ Simple case
➤ N and M are binary images, with 1 at edge points and 0 elsewhere

➤ The match of M at position (i,j) of N is obtained by

➤ placing M(0,0) at position N(i,j)

➤ counting the number of pixels in M that are 1 and are coincident with
1’s in N - binary correlation

C(i, j) = M
s=1

n

∑
r =1

n

∑ (r,s) × N (r + i, s + j)

Image-based matching- 17 Zoran Duric

Observations

➤ Complexity of matching M against N is O(n2m2) for an nxn
template and mxm image

➤ to allow rotations of M, must match rotated versions of M against N

➤ to allow for scale changes in M, must match scaled versions of M against N

➤ Small distortions in the image can give rise to very bad
matches

➤ can be overcome by “binary smoothing” (expansion) of either the template or
the image

➤ but this also reduces the “specificity” of the match

Image-based matching- 18 Zoran Duric

Hough transforms

➤ Consider the following simple problem:
➤ Given: a binary image obtained by thresholding and thinning the results

of edge detection

➤ Find

➤ a) the largest collinear subset of 1’s in that binary image

➤ b) all collinear subsets of size greater than a threshold t

➤ c) a set of disjoint collinear subsets of size greater than a threshold t

➤ Brute force algorithm
➤ For every possible line

➤ generate a list of image coordinates on that line and count the number
of edge points at those coordinates

➤ What is the set of all possible lines?

Image-based matching- 19 Zoran Duric

Representing lines

➤ Parametric representation of lines
➤ y = mx + b

➤ m is the slope

➤ b is the y-intercept

➤ problems

➤ m is unbounded

➤ cannot represent vertical lines

Image-based matching- 20 Zoran Duric

Parametric representation of lines (ρ,θ)

➤ ρ = xcosθ + ysinθ
➤ ρ is an unbounded

parameter in the
representation, but is
bounded for any finite
image

➤ θ, the slope parameters, is
bounded in the interval
[0,2π]

x

y

θ

ρ

Image-based matching- 21 Zoran Duric

Parametric representation of lines (x,y,x’,y’)

➤ Encode a line by the
coordinates of its two
intersections with the
boundary of the image

➤ all parameters are
bounded by the image
size

➤ but now we have 4
rather than two
parameters

(0,0)

(xmax, ymax)

(x1, y1)

(x2, y2)

Image-based matching- 22 Zoran Duric

Brute force solution to line detection

➤ Brute force algorithms enumerates L, the set of “all” lines
passing through B.

➤ for each line in L it generates the image pixels that lie on that line

➤ it counts the number of those pixels in B that are 1’s

➤ for problem (a) it remembers the maximal count (and associated line
parameters) greater than the required threshold

➤ for problem (b) it remembers all that satisfy the threshold
requirement.

➤ So, how do we
➤ enumerate L

➤ given an element, λ, of L enumerate the pixels in B that lie on λ

Image-based matching- 23 Zoran Duric

Brute force solution

➤ Enumeration of L
➤ (x,y,x’,y’) - easy: each (x,y) lies on

➤ one side of the image border, or

➤ a corner

➤ (x’,y’) can be a point on any
border not containing (x,y)

➤ (ρ,θ) - much harder

➤ ∆ρ = sin θ
➤ ∆θ ≅ 1/n
➤ practically, would use a constant

quantization of ρ.

x

y

θ

ρ 1

∆ρ

∆ρ

1

∆θ

n

Image-based matching- 24 Zoran Duric

Generating the pixels on a line

➤ Standard problem in computer graphics

➤ Compute the intersections of the line with the image
boundaries

➤ let the intersection be (x1, y1), (x2, y2)

➤ Compute the “standard” slope of the line

➤ special cases for near vertical line

➤ if the slope is < 1, then then the y coordinate changes more slowly than x,
and the algorithm steps through x coordinates, computing y coordinates -
depending on slope, might obtain a run of constant y but changing x
coordinates

➤ if the slope >= 1, then x changes more slowly than y and the algorithm
will step through y coordinates, computing x coordinates

Image-based matching- 25 Zoran Duric

Drawbacks of the brute force algorithm

➤ The complexity of the algorithm is the sum of the lengths
of all of the lines in L

➤ consider the [(x1, y1), (x2, y2)] algorithm

➤ there are about 3n possible locations for (x1, y1) and there are 2n possible
locations for (x2, y2) once (x1, y1) is chosen(this avoids generating lines
twice). This is 6n2 lines

➤ It is hard to compute the average length of a line, but it is O(n).

➤ So, the brute force algorithm is O(n3)

➤ Many of these lines pass through all or almost all 0’s
➤ practically, the 1’s in our binary image were generated by an edge or

feature detector

➤ for typical images, about 3-5% of the pixels lie on edges

➤ so most of the work in generating lines is a waste of time.

Image-based matching- 26 Zoran Duric

Hough transform

➤ Original application was detecting lines in time lapse
photographs of bubble chamber experiments

➤ elementary particles move along straight lines, collide, and create more
particles that move along new straight trajectories

➤ Hough was the name of the physicist who invented the method

➤ Turn the algorithm around and loop on image coordinates
rather than line parameters

➤ Brute force algorithm:
➤ For each possible line, generate the line and count the 1’s

➤ Hough transform
➤ For each possible line pixel (x,y) (1 in B) generate the set of all lines

passing through (x,y)

Image-based matching- 27 Zoran Duric

Hough transform

➤ Algorithm uses an array of accumulators, or counters, H to
tally the number of 1’s on any line

➤ we will use the (ρ,θ) representation, so each element of H, referenced by
H(ρ,θ), is the counter for the line ρ = xcosθ + y sinθ

➤ size of this array is determined by the quantization of the parameters in the
chosen line representation

➤ when the algorithm is completed, H(ρ,θ) will contain the number of points
from B that satisfy the equation (i.e, lie on the line) ρ = xcosθ + y sinθ

➤ Algorithm scans B. Whenever it encounters a 1 at a pixel
(x,y) it performs the following loop

➤ for θ = 0, 2π, ∆θ
ρ= xcosθ + y sinθ

Η[ρnorm(ρ), θnorm(θ)] = Η[ρnorm(ρ), θnorm(θ)] + 1
➤ norm turns the floats into valid array indices

Image-based matching- 28 Zoran Duric

Hough transform

➤ What is the computational
complexity of the Hough
transform?

➤ Scanning the image is O(n2) and if we
encounter a fixed percentage of 1’s, we
still need to nontrivially process O(n2)
pixels

➤ At each pixel, we have to generate O(n)
lines that pass through the pixel

➤ So it is also O(n3) in the worst case

➤ But practically, the Hough transform
only does work for those pixels in B that
are 1’s

➤ This makes it much faster than the brute
force algorithm

• At every pixel on the bold line
the Hough transform algorithm
will cast a vote for that line
• When the algorithm terminates,
that bin will have a score equal to
the number of pixels on the line

Image-based matching- 29 Zoran Duric

Solving the original problems

➤ Problem (a) - Find the k lines having maximal score
➤ compute the Hough transform

➤ scan array H for the k maximal values; resolve ties arbitrarily

➤ problem: scanning H can be time consuming.

➤ Alternatively, can keep track of the locations in H having maximal
tally as the algorithm proceeds using a priority queue

➤ Problem (b) - Find all lines having score > t
➤ compute the Hough array

➤ scan the array for all values > t

➤ problem: also requires scanning the array

➤ Can maintain a data structure of above threshold elements of H and
add elements to this data structure whenever the algorithm first sends
an entry of H over t.

Image-based matching- 30 Zoran Duric

Solving the original problems

➤ Problem (c) - find a set of disjoint lines all of which have
size greater than a threshold t.

➤ compute the Hough transform, H

➤ scan H for the highest value; if it is less then t, halt. If it is >= t, add it to the
set (*)

➤ remove the “votes” cast by the points on that line

➤ use our line generation algorithm to enumerate the image points on that
line

➤ subtract the votes cast for all elements of H by the 1’s on that line

➤ this ensures that a point in the image will contribute to the score for one
and only one line as the lines are extracted

➤ go back to (*)

➤ It is difficult to see how to avoid the scanning of H after
iteration 1

Image-based matching- 31 Zoran Duric

Other practical problems

➤ Algorithm is biased towards long lines
➤ the number of pixels on the intersection of a line and the

image varies with ρ and θ.

➤ When we generalize this algorithm to detect other types
of shapes, the bias will be introduced by the border of the
images clipping the shapes for certain placements of the
shapes in the image.

➤ Can precompute, for each (ρ,θ), the number of pixels on
the line ρ = xcos θ + y sin θ and place these in a
normalization array, η, which is exactly the same size as
H

➤ After the accumulator array is completed, we can divide
each entry by the corresponding entry in η to obtain the
percentage of pixels on the line that are 1 in B.

➤ Similar tricks can be developed to avoid scanning H

Image-based matching- 32 Zoran Duric

Asymptotic complexity

➤ In the worst case, the Hough transform algorithm is an
O(n3) algorithm, just like the brute force algorithm.

➤ Consider the following alternative approach
➤ generate all pairs of pixels in B that have value 1

➤ these define the set of all line segments that will have counts > 1 after
running the conventional Hough transform algorithm

➤ for each pair, compute the parameters of the line joining that pair of points

➤ not necessary to quantize the parameters for this version of the
algorithm

➤ generate the set of pixels on this line and count the number of 1’s in B in
this set. This is the number of 1’s in B that fall on this line

➤ Generate a data structure of all such lines, sorted by count or normalized
count. Can be easily used to solve problems (a) and (b)

Image-based matching- 33 Zoran Duric

Asymptotic complexity

➤ What is the complexity of this algorithm?
➤ Again, if there are O(n) 1’s in B, then we generate n2 lines

➤ Each of these has O(n) points on it that have to be examined from B

➤ So the algorithm is still O(n3)

➤ Suppose that we sample the 1’s in B and compute the lines
joining only pairs from this sample.

➤ If our sample is small - say only the square root of the number of 1’s in B,
then we will be generating only O(n) lines - one for each pair of points
from a set of size O(n1/2)

➤ Incredibly, it can be shown that with very high probability any such
random sample of size n1/2 will contain at least two of the points from any
“long” line

➤ This method reduces the asymptotic complexity to O(n2)

Image-based matching- 34 Zoran Duric

Using more image information

➤ Practically, the 1’s in B were computed by applying an
edge detector to some gray scale image

➤ this means that we could also associate with each 1 in B the gradient
direction measured at that edge point

➤ this direction can be used to limit the range of θ considered at each 1
in B - for example, we might only generate lines for θ in the range
[φ−π/4, φ+π/4] where φ is perpendicular to the gradient direction at a
pixel

➤ this will further reduce the computational cost of the algorithm

➤ each edge also has a gradient magnitude

➤ could use this magnitude to differentially weigh votes in the Hough
transform algorithm

➤ complicates peak finding

➤ generally not a good idea - isolated high contrast edges can lead
to unwanted peaks

Image-based matching- 35 Zoran Duric

Generalized Hough transform techniques

➤ Most of the comparisons performed during edge template
matching match 0’s in the image N against points in M

➤ this is similar to the situation in the brute force line finder, which
generates lines containing mostly 0’s in B.

➤ The Generalized Hough transform avoids comparing the
0’s in the image against the edge template.

➤ similar to the Hough transform, the outermost loop of the algorithm will
perform computations only when encountering a 1 in N

➤ Let H(i,j) be an array of counters. This array will be used
to accumulate the values of C(i,j)

➤ Whenever we encounter a 1 in N we will efficiently determine all
placements of M in N that would cause an edge point of T to be aligned
with this point of N. These placement will generate indices in C to be
incremented

Image-based matching- 36 Zoran Duric

Template representation for the generalized
Hough transform

➤ Rather than represent M as a binary array, we will
represent it as a list of coordinates, M’.

(0,0) M’
(0,-1)
(-1,-1)
(-2,-1)
(-3,-1)
(-3,-2)
(-3,-3)
(-2,-3)
(-1,-3)
(0,-3)

a
b
c

• If we place pixel a over
location (i,j) in N, then the
(0,0) location of the template
will be at position (i,j-1)
•If we place pixel c over
location (i,j) in N, then the
(0,0) location of the template
will be at position (i-2,j-1)

(4,5)

a
b
c

M

Image-based matching- 37 Zoran Duric

GHT - basic algorithm

➤ Scan N until a 1 is encountered at position (x,y)
➤ Iterate through each element (i,j) from M’

➤ The placement of M over N that would have brought M(i,j) over
N(x,y) is the one for which the origin of M is placed at position (x+i,
y+j).

➤ Therefore, we increment H(x+i, y+j) by 1

➤ And move on to the next element of M’

➤ And move on to the next 1 in N

➤ When the algorithm completes H(i,j) counts the number of
template points that would overlay a “1” in N if the
template were placed at position (i,j) in N.

Image-based matching- 38 Zoran Duric

Example

Image-based matching- 39 Zoran Duric

Example

Image Hough array

1

1

Image-based matching- 40 Zoran Duric

Example

Image Hough array

1

1

1

Image-based matching- 41 Zoran Duric

Example

Image Hough array

1
1

1

1

Image-based matching- 42 Zoran Duric

Example

Image Hough array

1
1

1

1

1

Image-based matching- 43 Zoran Duric

Example

Image Hough array

1
1

1

1

1

1

Image-based matching- 44 Zoran Duric

Example

Image Hough array

1
1

11

1

1

1

Image-based matching- 45 Zoran Duric

Example

Image Hough array

1
1

11 1

1

1

1

Image-based matching- 46 Zoran Duric

Example

Image Hough array

1
1

11 1

1

1

1

Template Increment pattern

1

Image-based matching- 47 Zoran Duric

Example

Image Hough array

2
2

11 1

1

1
1

1

Template Increment pattern

1

1
11

1 1

Image-based matching- 48 Zoran Duric

Example

Image Hough array

2

3

21 1

1

1
1

1

Template Increment pattern

1

1
11

1 1 1

1
111

1

Image-based matching- 49 Zoran Duric

Example

Image Hough array

2
4

21 1

1

1
2

1

Template Increment pattern

1

1
11

1 2 1

1
111

1

1

1

1 1

1

Image-based matching- 50 Zoran Duric

GHT - generalizations

➤ Suppose we want to detect instances of M that vary in
orientation in the image

➤ need to increase the dimensionality of H by adding a dimension, θ, for
orientation

➤ Now, each time we encounter a 1 during the scan of N we must consider
all possible rotations of M wrt N - will result in incrementing one counter
in each θ plane of H for each point in M.

➤ For each (i,j) from M

➤ For each quantized θ
➤ Determine the placement (r,s) of the rotated template in N that

would bring (i,j) onto (x,y) and increment H(r,s,θ)

➤ For scale we would have to add one more dimension to H
and another loop that considers possible scales of M.

Image-based matching- 51 Zoran Duric

Representing high dimensional Hough arrays

➤ Problems with high dimensional arrays:
➤ storage

➤ initialization and searching for high values after algorithm

➤ Possible solutions
➤ Hierarchical representations

➤ first match using a coarse resolution Hough array

➤ then selectively expand parts of the array having high matches

➤ Projections

➤ Instead of having one high dimensional array store a few two
dimensional projections with common coordinates (e.g., store (x,y),
(y,θ), (θ,s) and (s,x))

➤ Finds consistent peaks in these lower dimensional arrays

Image-based matching- 52 Zoran Duric

GHT generate and test

➤ Peaks in Hough array do not reflect spatial distribution of
points underlying match

➤ typical to “test” the quality of peak by explicitly matching template
against image at the peak

➤ Controlling the generate and test framework
➤ construct the complete Hough array, find peaks, and test them

➤ test as soon as a point in the Hough space passes a threshold

➤ if the match succeeds, points in I that matched can be eliminated from
further testing

➤ test as soon as a point in the Hough space is incremented even once

Image-based matching- 53 Zoran Duric

Chamfer matching

➤ Given:
➤ binary image, B, of edge and local feature locations

➤ binary “edge template”, T, of shape we want to match

➤ Let D be an array in registration with B such that D(i,j) is
the distance to the nearest “1” in B.

➤ this array is called the distance transform of B

➤ Goal: Find placement of T in D that minimizes the sum,
M, of the distance transform multiplied by the pixel values
in T

➤ if T is an exact match to B at location (i,j) then M(i,j) = 0

➤ but if the edges in B are slightly displaced from their ideal locations in T,
we still get a good match using the distance transform technique

Image-based matching- 54 Zoran Duric

Computing the distance transform

➤ Brute force, exact algorithm, is to scan B and find, for each
“0”, its closest “1” using the Euclidean distance.

➤ expensive in time, and difficult to implement

Image-based matching- 55 Zoran Duric

Computing the distance transform

➤ Two pass sequential algorithm

➤ Initialize: set D(i,j) = 0 where B(i,j) = 1, else set D(i,j) = ∞
➤ Forward pass

➤ D(i,j) = min[D(i-1,j-1) + 4, D(i-1,j) + 3, D(i-1, j+1) +4, D(i,j-1) + 3,
D(i,j)]

➤ Backward pass
➤ D(i,j) = min[D(i,j+1) + 3, D(i+1,j-1) + 4, D(i+1, j) +3, D(i+1,j+1) + 4,

D(i,j)]

Image-based matching- 56 Zoran Duric

Distance transform example

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 2 3 0

0

1 2 3

3 3 3 1 0
0 0 0

0

0

1 2
4 4 2 1 1
5 3 2 1 1 1 1

f f f
f b

bbb

Image-based matching- 57 Zoran Duric

Distance transform example

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 2 3 0

0

1 2 3

3 3 3 1 0
0 0 0

0

0

1 2
4 4 2 1 1
5 3 2 1 1 1 1

f f f
f b

bbb

D(i,j) = min[D(i,j), D(i,j+1)+1,
D(I+1, j-1)+1, D(i+1,j)+1,
D(i+1,j+1)+1]

1 2 2 2 2 2 3
1 1 2 1 1 1 2 2
2 2 2 1 0

0

1 1 1

3 3 2 1 0
0 0 0

0

0

1 1
4 3 2 1 1
4 3 2 1 1 1 1

33333221
44444322

Image-based matching- 58 Zoran Duric

Chamfer matching

➤ Chamfer matching is convolution of a binary edge
template with the distance transform

➤ for any placement of the template over the image, it sums up the distance
transform values for all pixels that are “1’s” (edges) in the template

➤ if, at some position in the image, all of the edges in the template coincide
with edges in the image (which are the points at which the distance
transform is zero), then we have a perfect match with a match score of 0.

Image-based matching- 59 Zoran Duric

Example

1 2 2 2 2 2 3
1 1 2 1 1 1 2 2
2 2 2 1 0

0

1 1 1

3 3 2 1 0
0 0 0

0

0

1 1
4 3 2 1 1
4 3 2 1 1 1 1

33333221
44444322

Template

1 2 2 2 2 2 3
1 1 2 1 1 1 2 2
2 2 2 1 0

0

1 1 1

3 3 2 1 0
0 0 0

0

0

1 1
4 3 2 1 1
4 3 2 1 1 1 1

33333221
44444322

Match score is T(i, j)D(i + k, j + l)
l =1

n

∑
k =1

n

∑

Image-based matching- 60 Zoran Duric

Hausdorff distance matching

➤ Let M be an nxn binary template and N an nxn binary
image we want to compare to that template

➤ H(M,N)) = max(h(M, N), h(N, M)) where

➤ || || is a distance function like the Euclidean distance function

➤ h(A,B) is called the directed Hausdorff distance.
➤ ranks each point in A based on closeness to a point in B

➤ most mis-matched point is measure of match

➤ if h(A,B) = e, then all points in A must be within distance e of B.

➤ generally, h(A,B) <> h(B,A)

➤ easy to compute Hausdorff distances from distance transform

h(A,B) = max
a∈A

min
b∈B

a − b

Image-based matching- 61 Zoran Duric

Summary of 2-D object recognition

➤ Binary vision systems
➤ segmentation by thresholding and

connected component analysis

➤ object modeling using statistical
techniques

➤ means and variances of global
object features such as area,
perimeter, etc.

➤ recognition using statistical
recognition techniques

➤ k-nearest neighbors

➤ Bayesian recognition

➤ Drawbacks
➤ touching objects

➤ occluded objects

➤ weak segmentation techniques

➤ Grey level vision systems
➤ (optional) segmentation by edge

detection

➤ object modeling by templates

➤ gray level region templates

➤ edge templates (binary)

➤ recognition using correlation

➤ brute force image correlation

➤ speedup methods

➤ Hough transform methods

➤ Chamfer matching

➤ Drawbacks
➤ computational complexity

➤ to support rotations and
scaling of templates

Image-based matching- 62 Zoran Duric

Other generalizations

➤ Match patterns of linear and curvilinear features against
images from which such features have been detected

➤ Impose a hierarchical structure on M, and match pieces
and compositions of pieces.

➤ at lowest level one finds possible matches to small pieces of M

➤ a second GHT algorithm can now find combinations of pieces that satisfy
other spatial constraints.

Image-based matching- 63 Zoran Duric

Hough Transforms for line matching

➤ Let L = {L1, ..., Ln} be the set of line segments which
define M

➤ Let L’ = {L’ 1, ..., L’m} be the set of observed line
segments from N

➤ Define Li - Lj as follows:
➤ If Lj is a subsegment of Li, then Li - Lj = l j , where l j is the length of Lj

➤ otherwise Li - Lj = 0

➤ Let F be a set of transformations that map lines to lines

➤ Given F, L and L’, find f in F that maximizes:

v(f) = [Li − f (Lj)]
Lj∈L’
∑

Li∈L
∑

Image-based matching- 64 Zoran Duric

Example - translation only

➤ Which translations get incremented
➤ α-a: (0,6), (1,6), (2,6), (3,6) incremented by 2

➤ α-b: none

➤ α-c: (2,0), (2,1) incremented by 2

L

(0,6) (5,6)

(2,5)

(2,1)

(2,0) (5,0)

L’
(0,0) (2,0)a

b

c

α

Image-based matching- 65 Zoran Duric

Fast template matching

➤ Simulated annealing approach
➤ Let T θ,s be a rotated and scaled version of T

➤ For a random θ and s, and a random (i,j) match T θ,s at position (i,j) of I

➤ Now, randomly perturb θ,s,i and j by perturbations whose magnitudes
will be reduced in subsequent iterations of the algorithm to obtain θ’,
s’, i’, j’.

➤ Match T θ’,s’ at position (i’,j’). If the match is better, “move” to that
position in the search space. If the match is worse, move with some
probability to that position anyway!

➤ Iterate using smaller perturbations, and smaller probabilities of
moving to worse locations

➤ the rate at which the probability of taking “bad” moves decreases
is called the “cooling schedule” of the process.

➤ This has also been demonstrated with deformation parameters that mimic
projection effects for planar patterns.

