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Time varying image analysis

■ Motion detection

■ Computing image motion

■ Motion estimation

■ Egomotion and structure from motion

■ Motion classification
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The problems

■ Visual surveillance

– stationary camera watches a workspace – find moving objects 
and alert an  operator

– moving camera navigates a workspace – find moving objects 
and alert an operator

■ Image coding

– use image motion to perform more efficient coding of images

■ Navigation

– camera moves through the world - estimate its trajectory
» use this to remove unwanted jitter from image sequence - image 

stabilization and mosaicking

» use this to control the movement of a robot through the world
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Surveillance example: Adding an object to the scene
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Image Sequence Smoothing
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Motion detection

■ Frame differencing
– subtract, on a pixel by pixel basis, consecutive frames in a 

motion sequence
– high differences indicate change between the frames due to 

either motion or changes in illumination

■ Problems
– noise in images can give high differences where there is no 

motion
» compare neighborhoods rather than points

– as objects move, their homogeneous interiors don’t result in 
changing image intensities over short time periods

» motion detected only at boundaries
» requires subsequent grouping of moving pixels into objects
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Image Differencing
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Image Differencing: Results

1 frame difference 5 frame difference
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Motion detection

■ Background subtraction
– create an image of the stationary background by averaging a long sequence

» for any pixel, most measurements will be from the background

» computing the median measurements, for example, at each pixel, will with high 
probability assign that pixel the true background intensity - fixed threshold on
diffrencing used to find “foreground” pixels

» can also compute a distribution of background pixels by fitting a mixture of
Gaussians to set of intensities and assuming large population is the background 
- adaptive thresholding to find foreground pixels

– difference a frame from the known background frame
» even for interior points of homogeneous objects, likely to detect a difference

» this will also detect objects that are stationary but different from the background

» typical algorithm used in surveillance systems

■ Motion detection algorithms such as these only work if the camera 
is stationary and objects are moving against a fixed background
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Background Subtraction: Results

Confidence corresponds to gray-level value. 
High confidence – bright pixels, low confidence – dark pixels. 
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Background modeling: color-based

■ At each pixel model colors (r,g,b) or gray-level  values g. The 
following equations are used to recursively estimate the mean 
and the variance at each pixel:

where zt+1 is the current measurement. The mean µ and the 
variance σ can both be time varying. The constant α is set 
empirically to control the rate of adaptation (0<α<1). 

■ A pixel is marked as foreground if given red value r (or for any 
other measurement, say g or b) we have 
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Background model

■ σrcam is the variance of the camera noise, can be estimated from 
image differences of any two frames.

■ If we compute differences for all channels, we can set a pixel as 
foreground if any of the differences is above the preset threshold.

■ Noise can be cleaned using connected component analysis and 
ignoring small components.

■ Similarly we can model the chromaticity values rc, gc and use 
them for background subtraction:

rc=r/(r+g+b), gc=g/(r+g+b)

Time-varying image analysis- 12 Zoran Duric

Background model: edge-based 

■ Model edges in the image. This can be done two different ways:

– Compute models for edges in a the average background image

– Subtract the background (model) image and the new frame; 
compute edges in the subtraction image; mark all edges that are 
above a threshold. 

» The threshold can be learned from examples

» The edges can be combined (color edges) or computed 
separately for all three color channels
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Foreground model

■ Use either color histograms (4-bit per color), texture features, edge 
histograms to model the foreground

■ Matching the foreground objects between frames: tracking
■ Can compare foreground regions directly: shift and subtract. SSD

or correlation: M, N are two foreground regions. 
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A 300-Frame Sequence with a “Busy” Background

click to start movie
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Color-based moving object detection

Some Intermediate Maps Used in the Method

Edge-based moving object detection
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Combined color and edge based detection Detected human
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Results for the sequence

click to start movie
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Using histograms for background modeling

■ Use histograms of small regions to model the background:

– Color histograms computed for small regions of the 
“background” image and the current (new) image (reduced 
color/ 12 bit bit representation)

– Color edge histograms computed for small regions of the 
“background” image and the current image (36 bin
quantization)
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Color Histograms

Reduced color representation  = 

C = (R/16) * 256 +  (G/16)*16  + (B/16)

(This results in a 24 -> 12 bit color depth reduction)

This results in a 4096 bin histogram

− lowest 4 bits are less useful

− requires less storage

− faster implementation - easier to compare  histograms
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Color Edge Histograms

■ Use edge detector to compute edges in each color band 
(rx,ry,gx,gy,bx,by)

■ Combine the three color bands into the structure matrix, S, to 
compute the color edge response

■ The edge strength is computed as the larger of the two 
eigenvalues of S, and the orientation is given by the 
corresponding eigenvector 

■ Histogram bin index is determined using edge orientation (36 
bins total), and the bin count is incremented using the edge 
magnitude
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Histogram Matching

■ Histogram Intersection

■ Chi Squared Formula
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Overall control

■ Divide each frame into 40x40 pixel blocks 

■ To make sure that we do not miss objects on grid block 
boundaries we tile the frame by overlaying two grids, one 
of which is shifted by 20 pixels in x and y directions
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Criteria for block activation

■ On a block by block basis, similarity measures between 
background and foreground histograms are computed

■ For histogram intersection: If the similarity is below a 
threshold, T, then the block contains a foreground object and 
is activated for display

■ For chi squared: If the X2 measure is greater than a threshold, 
T, then the block contains a foreground object and is activated 
for display
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Examples of edge histograms
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Similarity (inters.) = 92%
X2 = 61

Similarity (inters.) = 22%
X2 = 828
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Using edge histograms for  detection
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Moving person in a cluttered scene
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Color histogram based detection

Time-varying image analysis- 28 Zoran Duric

Edge histogram-based detection
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Surveillance: dropping an object

Time-varying image analysis- 30 Zoran Duric

Surveillance: removing an object



Time-varying image analysis- 31 Zoran Duric

Surveillance:  Interacting people
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Motion estimation - optic flow

■ Optic flow is the 2-D velocity field induced in a dynamic scene 
due to the projection of moving objects onto the image plane

■ Three prevalent approaches to computing optic flow:

– token matching or correlation

» extract features from each frame (grey level windows, 
edge detection)

» match them from frame to frame

– gradient techniques

» relate optic flow to spatial and temporal image derivatives

– velocity sensitive filters

» frequency domain models of motion estimation
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A 1-d gradient technique

■ Suppose we have a 1-D image that changes over time due to a translation of the image

■ Suppose we also assume that the image function  is, at least over small neighborhoods, 
well approximated by a linear function.

– completely characterized by its value and slope

■ Can we estimate the motion of the image by comparing its spatial derivative at a point 
to its temporal derivative?

– example: spatial derivative is 10 units/pixel and temporal derivative is 20 
units/frame

– then motion is (20 units/frame) / (10 units/pixel) = 2 pixels/frame

x

I(x)
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Gradient techniques

■ Assume I(x,y,t) is a continuous and differentiable function of space and time

■ Suppose the brightness pattern is locally displaced by a distance dx, dy over 
time period dt.

– this means that as the time varying image evolves, the image brightnesses of 
points don’t change (except for digital sampling effects) as they move in the 
image

– I(x,y,t) = I(x + dx, y + dy, t + dt)

■ We expand I in a Taylor series about (x,y,t) to obtain

– I(x + dx, y + dy, t + dt) = I(x,y,t) + dx∂I/∂x + dy ∂I/∂y + dt∂I/∂t  + (higher 
order terms)

■ dI/dt = [I(x+dx, y+dy, t+dt) - I(x,y,t)]/dt = dx/dt∂I/∂x +dy/dt∂I/∂y + ∂I/∂t = 0

– valid only if temporal change is due entirely to motion

■ Can rewrite this as dI/dt = Gxu + Gyv + Gt = 0.  The G’s are derivatives 
measured from the image sequence, and u and v are the unknown optic flow 
components in the x and y directions, respectively
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Motion constraint line

■ So, the spatial and temporal derivatives at a point in the image only provide a 
linear constraint on the optic flow

Gxu + Gyv + Gt = 0

u

v
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Motion constraint line

■ If Gx and Gy are small, then motion information cannot be accurately 
determined

■ If Gx = 0, then -Gt = Gyv, so that v is determined, but u is unknown

■ If H and L denote the gradient and level directions at a pixel then

– GH = ||∇G||

– L is perpendicular to H

– GL = 0

■ Then Gt = -GHdh/dt, where nf=dh/dt is the displacement in the gradient 
direction (h = ∇G/ ||∇G||)

– dh/dt can be recovered by measuring Gt and GH. It is called normal flow

– but dl/dt cannot be recovered, since GL = 0

– this is called the aperture problem
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Aperture problem
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Motion Flow Example: Images
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Motion Flow Example: Normal Flow
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Recovering u and v

■ Compute for normal flow in a small image neighborhood

– nf = -Gt/||∇G||

■ Solve system of linear equations corresponding to motion constraints in the 
small neighborhood

– assume u and v will not vary in that small neighborhood

– requires that neighborhoods have edges with different orientations, since 
slope of motion constraint line is determined by image gradient

v

u
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Recovering u and v

■ If the constraint lines in a neighborhood are nearly parallel (i.e., 
the gradient directions are all similar), then the location of the 
best fitting (u,v) will be very sensitive to errors in estimating 
gradient directions.

■ More generally, one could fit a parametric form to local 
neighborhoods of constraint lines, finding parameters that bring
constraint lines “nearest” to the estimated motion assigned to 
each pixel.

– for example, if we assume that the surface we are viewing in 
any small image neighborhood is well approximated by a 
plane, then the optical flow will be a quadratic function of 
image position in that image neighborhood
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A regularization approach

■ Many vision problems such as stereo reconstruction of visible surfaces and recovery 
of optic flow are instances of ill posed problems.

■ A problem is well posed when its solution:

– exists

– is unique, and

– depends continuously on its initial data

■ Any problem that is not well posed is said to be ill posed

■ The optic flow problem is to recover both degrees of freedom of motion at each 
image pixel, given the spatial and temporal derivatives of the image sequence

– but any solution chosen at each pixel that locally satisfies the motion constraint 
equation can be used to construct an optic flow field consistent with the 
derivatives measured

– therefore, the solution is not unique - how to choose one?
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A regularization approach

■ Solution - add a priori knowledge that can choose between the solutions

■ Formally, suppose we have an ill posed problem of determining z from data y 
expressed as

– Az = y, where A is a linear operator (e.g., projection operation in image 
formation)

■ We must choose a quadratic norm  || || and a so-called stabilizing functional 
||Pz|| and then find the z that minimizes:

– ||Az-y||2 + λ ||Pz||2

– λ controls the compromise between the degree of regularization and the 
closeness of the solution to the input data (the first term).

■ T. Poggio, V. Torre and C. Koch, Computational vision and regularization 
theory, Nature, 317, 1984.
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A regularization approach

■ For optic flow:

– the first term is [dx/dt∂I/∂x +dy/dt∂I/∂y + ∂I/∂t]2 = [dI/dt]2

» this should, ideally, be zero according to the theory

– the second term enforces a smoothness constraint on the 
optic flow field:

ε = (∂u/∂x)2 + (∂v/∂x)2 + (∂u/∂y)2 + (∂v/∂y)2

– The regularization problem is then to find a flow field that 
minimizes 

[dI/dt] 2 + λ ε
– This minimization can be done over the entire image  using 

various iterative techniques
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Token and correlation methods

■ Gradient based methods only work when the motion is “small” 
so that the derivatives can be reliably computed
– although for “large” motions, one can employ multiresolution methods

■ Tracking algorithms can compute motion when the motion is 
“large”
– correlation

– feature tracking

■ Correlation
– choose a kxk window surrounding a pixel, p,  in frame i.

– compare this window against windows in similar positions in frame i+1

– The window of best match determines the displacement of p from frame i 
to frame i+1
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Correlation

■ Correlation
– sum of squared gray level differences

– sum of absolute intensity differences

– “robust” versions of these sensitive to outliers

■ Drawbacks of correlation
– matching in the presence of rotation is computationally expensive since 

all orientations of the window must be matched in frame i+1

– if motion is not constant in the kxk window then the window will be 
distorted by the motion, so simple correlation methods will fail

» this suggests using smaller windows, within which motion will not 
vary significantly

» but smaller windows have less specificity, leading to matches more 
sensitive to noise 
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Tracking

■ Apply a feature detector, such as an edge detector, to each frame 
of the sequence

– want features to be distinctive

– example: patterns of edges or gray levels that are dissimilar to
their surrounds (image has a locally small autocorrelation)

■ Match these features from frame to frame

– might assume that nearby features move similarly to help 
disambiguate matches (but this is not true at motion 
boundaries)

– integrate the matching with assumptions about scene structure -
e.g., features are all on a plane moving rigidly
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Motion estimation – token matching

■ Extract features from each frame (grey level windows, edge 
detection)

– λ1 ≥ λ2 ≥ 0 are eigenvalues of M
– If λ1 = λ2 = 0, mean squared magnitude of the gradient is 0 

(flat, unchanging area in the image)
– If λ1 > λ2 = 0, values do not change in the direction of the 

corresponding eigenvector (edge)
– If λ1 > 0 and λ2 > 0, gray values change in multiple directions 

(corner)
» λ2 > τ, where τ is some threshold











Σ

Σ
Σ
Σ

= 2

2

y

yx

yx

x

E

EE

EE

E
S Ex and Ey are x and y

components of image gradient



Time-varying image analysis- 49 Zoran Duric

Motion estimation – token matching

■ Match them from frame to frame. Detect tokens in the next frame 
using lower threshold. Why?

– Minimize SSD (sum of squared differences) over a 
neighborhood in the new image. M is a small area around the 
token (5x5,7x7,11x11) 

– Maximize the correlation over a neighborhood in the new 
image

SSD = [M(i, j) − N(i, j)]2
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Multiresolution methods

■ Consider using edges as features for a tracking algorithm for 
motion estimation.  What should the scale of the edge detector 
be?
– small scale

» many edges are detected

» easily confused with one another

» computationally costly matching problem

– coarse scale

» relatively few edges identified

» localized only poorly, so motion estimates have high errors

» simple matching problem
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Multiresolution methods

■ Multiresolution - process the image over a range of scales, 
using the results at coarser scales to guide the analysis at 
finer scales

– detect edges at a coarse scale

– estimate motion by tracking

– use these estimates as initial conditions for matching 
edges at next finest scale

■ These are also called focusing methods or scale space 
methods

– can also apply to gradient based motion estimators
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3-D motion and optical flow

■ Assume a camera moving in a static environment

■ A rigid body motion of the camera can be expressed as a translation and a 
rotation about an axis through the origin.

■ Let

– t be the translational component of the camera motion

– Z be the angular velocity

– r be the column vector [X Y Z] T

■ Then the velocity of r with respect to the XYZ coordinate system is

V = -t + Z x r
■ Let the components of

– t = [U V W]T

– w = [A B C]T
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3-D Motion and Optic Flow

■ Rewrite in component form:

X’ = -U - BZ + CY

Y’ = -V - CX + AZ

Z’ = -W - AY + BX

where the differentiation is with respect to time

■ The optic flow at a point (x,y) is (u,v) where

u = x’, x = fX/Z

v = y’, y = fY/Z

■ Differentiating x and y with respect to time, we obtain

u = X’/Z - XZ’/Z 2 = (-U/Z - B + Cy) - x(-W/Z - Ay + Bx)

v = Y’/Z - YZ’/Z 2 = (-V/Z - Cx + A) - y(-W/Z - Ay + Bx)
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3-D Motion and Optic Flow

■ These can be written in the form

u = ut + ur

v = vt + vr

■ (ut ,vt ) denotes the translational component of the optic flow

■ (ur ,vr ) denotes the rotational component of the optic flow

ut = [-U + xW]/Z

vt = [-V + yW]/Z

ur = Axy - B(x2 +1) + Cy

vr = A(y2 + 1) - Bxy - Cx

■ Notice that the rotational part is independent of Z  - it just depends on the 
image location of a point

■ So, all information about the structure of the scene is revealed through the
translational component



Time-varying image analysis- 55 Zoran Duric

Special case of a plane in motion

■ Suppose we are looking at a plane while the camera moves

– Z = Z0 + pX + qY

■ Then for any point on this plane

– Z - pX - qY = Z0 

– 1 - p(X/Z) - p(Y/Z) = Z0/Z

– 1/Z = [1-pX/Z - qY/Z]/Z0 = [1- px - qy]/Z0

■ So, we can rewrite the translational components of motion for a plane as:

ut = [-U + xW][1- px - qy]/Z0 = [-U/Z0 + xW/Z0] [1- px - qy]

vt = [-V +yW][1- px - qy]/Z0 = [-V/Z0 + xW/Z0] [1- px - qy] 

■ These are quadratic equations in x and y

■ So, if we can compute the translational component of the optic flow at 
“enough” points from a planar surface, then we can recover the translational
motion (with unknown scaling) and the orientation of the plane being viewed.  
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Pure translation

■ When camera motion is only translation, then we have

ut= [-U + xW]/Z

vt= [-V + yW]/Z

■ Consider the special point (u,v) = (U/W, V/W).

– This is the “image” of the velocity vector onto the image plane

– The motion at this point must be 0 since the surface point along this ray 
stays on the ray as the camera moves (also our equations evaluate to 0 at 
(U/W, V/W))

■ Consider the line connecting any other (x,y) to (x + ut, y + vt)

– The slope of this line is vt/ut = [x-u]/[y-v]

– So, the line must pass through (u, v)

■ All of the optic flow vectors are concurrent, and pass through the special point 
(u,v) which is called the  focus of expansion (contraction)
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Pure translation

■ Another way to look at it

– Let ∆t = 1, so that the image center at time t moves from (0,0,0) to 
(U,V,W) at time t+1

– Think of the two images as a stereo pair

– The location  of the projection of  (U,V,W), the lens center at time t+1 (the 
“right” image), in the image at time t (the left image) is at location (U/W, 
V/W) = (u,v)

– All conjugate lines at time t must pass through this point

– So, given a point (x,y) at time t, the location of its corresponding point at 
time t+1 in the original coordinate system must line on the line 
connecting (x,y) to (u,v)

■ So, if we know the optic flow at two points in the case of pure translation, we 
can find the focus of expansion

– in practice want more than two points
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Pure translation

■ Can we recover the third component of motion, W?

■ No, because the same optic flow field can be generated by two similar surfaces 
undergoing similar motions (U,V and W always occur in ratio with Z).  
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Normal flows and camera motion estimation

■ If we can compute optic flow at a point, then the foe is constrained to lie on 
the extension of the optic flow vector

■ But the aperture problem makes it difficult to compute optic flow without 
making assumptions of smoothness or surface order

■ Normal flow (the component of flow in the gradient direction) can be locally 
computed at a pixel without such assumptions

■ Can we recover camera motion from normal flow?
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Identifying the FOE from normal flow

■ Assume that the foe is within the field of view of the camera

■ For each point, p,  in the image

For each normal flow vector, n,

If p lies in the “correct” halfplane of n, then score a vote for p

The FOE is the centroid of the connected component of highest scoring points 
(might be a single pixel, but ordinarily will not be).

■ Alternative code - maintain an array of counters in register with the image

For each normal flow vector,n,

Increment the counters corresponding to all pixels in the “correct”
halfplane of n

Search the array of counters for the connected component of highest vote 
count

■ For an image containing N normal flow vectors and mxm pixels, both 
algorithms are (m2N), but (2) is more efficient
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Identifying the FOE from normal flow

■ What if the FOE is outside the field of view of the camera?

■ The image plane is a bad place to represent the FOE to begin with

– FOE indicates the direction of translational motion

– Pixels in a perspective projection image do not correspond to equal 
angular samples of directions

» in the periphery, a pixel corresponds to a wide range of directions

– Solution - represent the array of accumulators as a sphere, with an 
equiangular sampling of the surface of the sphere

» Each normal vector will then cast votes for all samples in a hemisphere

» Simple mathematical relationship between the spherical coordinate system of the array of 
counters, and the image coordinate system


