Problem solving and search: Chapter 3, Sections 1;'5

¢ Problem-solving agents
¢ Problem types

<& Problem formulation

{» Example problems

{> Basic search algorithms

N /

Problem-solving agenti

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING-AGENT(percepj returns an action
static: seq an action sequence, initially empty
state some description of the current world state
goal, a goal, initially null
problem a problem formulation

state— UPDATE-STATE (State, percept

if seqis emptythen
goal«— FORMULATE-GOAL (state
problem«— FORMULATE-PROBLEM(sState, god)
seq— SEARCH(problem

action«+— RECOMMENDATION(seq, state

seg— REMAINDER(seq, state

return action

Note: this isoffline problem solving; solution executed “eyes closed.”
inine problem solving involves acting without complete knowledgty

4

4 ™
Example: Romania'

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal
be in Bucharest

Formulate problem
states various cities
actions drive between cities

Find solution
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

N /

Example: Romania'

118 [1Vaslui

[dHirsova

Dobreta [J

[1Giurgiu Eforie

N /

4 ™
Problem types'

Deterministic, fully observable=- single-state problem
Agent knows exactly which state it will be in; solution is a
sequence

Non-observable=- conformant problem
Agent may have no idea where it is; solution (if any) is a
sequence

Nondeterministic and/or partially observabie> contingency problem
percepts provideewinformation about current state
solution is areeor policy
ofteninterleavesearch, execution

Unknown state space=- exploration problen{‘online”)

J

Example: vacuum world I

Single-statestart in #5.Solutiorf?? .

A 2 A
R | AR R | BB
3 | =) 4 =)
2R S
sdﬂ 6 dﬁ
L3 2R
7£ 8 dﬁ

_ /

Example: vacuum world I

Single-statestart in #5.Solutior?? .
[Right, Suck]

Conformantstartin{1,2,3,4,5,6,7,8}

e.g.,Right goes tof2, 4, 6, 8}. Solutior?? °

SRS

SELNIENILS

.

-

Example: vacuum world I

Single-statestart in #5.Solutior?? .
[Right, Suck]

Conformantstartin{1,2,3,4,5,6,7,8}

e.g.,Right goes to{2, 4, 6, 8}. Solutior?? °

L [H L [k

[Right, Suck, Left, Suck]

AJ[A[| A |2h

Contingencystart in #5

Murphy’s Law: Suck can dirty a clean car-
pet

Local sensing: dirt, location only.
Solutior??

.

10

-

Single-statestart in #5.Solutior??
[Right, Suck]

Conformantstartin{1,2,3,4,5,6,7,8}
e.g.,Right goes to{2, 4, 6, 8}. Solutior??
[Right, Suck, Left, Suck]

Contingencystart in #5

Murphy’s Law: Suck can dirty a clean car-
pet

Local sensing: dirt, location only.
Solutior?

[Right, if dirt then Suck]

5

Example: vacuum world I

SRS

SENIENILS

11

A problemis defined by four items:

initial state e.g., “at Arad”

goal tesf can be
explicit, e.g.,x = “at Bucharest”
implicit, e.g.,NoDirt(x)

path cost(additive)

A solutionis a sequence of actions
Qaading from the initial state to a goal state

/ Single-state problem formulation'

successor functiof(z) = set of action—state pairs
e.g.,.5(Arad) = {< Arad — Zerind, Zerind >, ...}

e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is thestep costassumed to be 0

~

)

12

Selecting a state spaj

Real world is absurdly complex
= state space must ladstractedor problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad— Zerind” represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizabilitgnyreal state “in Arad”
must get tasomereal state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

N

13

Example: vacuum world state space grap!'

(Fel 5

S s

LCAQ@ : gQDR LCgQ : s AQDR
LCE@U T AQDR
stateS?
action®?
goal tesp?
path cose?

~

14

(&l |

S

0

=)
a8
-

goal tes?? no dirt

=D UE

S

Example: vacuum world state space grap!'
=)

AQQR

LCEQ .

sﬁDR

QS_) L

path cost? 1 per action (0 fotNoOp)

&

state®? integer dirt and robot locations (ignore datount$
action®? Left, Right, Suck, NoOp

~

15

Example: The 8-puzz|ﬂ

5 4
6 1 8
7 3 2

state8?
action®?
goal tesp?
path cos??

.

Start State

1 2
8
7 6

Goal State

16

Example: The 8-puzz|ﬂ

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

state®? integer locations of tiles (ignore intermediate positions)
action®? move blank left, right, up, down (ignore unjamming etc.)
goal tes?? = goal state (given)

path cos?? 1 per move

[Note: optimal solution oh-Puzzle family is NP-hard]

_ /

17

Example: robotic assemblﬂ

state®? real-valued coordinates of
robot joint angles
parts of the object to be assembled

action®? continuous motions of robot joints
goal tes?? complete assemblyith no robot included!
path cos?? time to execute

_ /

18

/ Tree search algorithmﬂ \

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a.expandingstates)

function TREE-SEARCH(problem, strategyreturns a solution, or failure
initialize the search tree using the initial statepadblem
loop do
if there are no candidates for expangioen return failure
choose a leaf node for expansion accordingttategy
if the node contains a goal stélten return the corresponding solutior
elseexpand the node and add the resulting nodes to the search treg
end

\ /

19

Tree search exampli

20

Tree search exampli

Csibiu S Gmisoar> ~ CZerind S

21

Tree search exampli

22

-

Implementation: states vs. nodel

A stateis a (representation of) a physical configuration
A nodeis a data structure constituting part of a search tree

includesparent children, depth path costy(x)
Stategdo not have parents, children, depth, or path cost!

State

OBan

=<

Kstates.

Nod

state

parent

/ \
children

depth =6
g=6

The ExPAND function creates new nodes, filling in the various fields an
using the $CcCcESsSORN of the problem to create the corresponding

~

J

23

-

Implementation: general tree searct'

~

function TREE-SEARCH(problem, fringé returns a solution, or failure
fringe < INSERTTM AKE-NODE(INITIAL -STATE[probleni), fringe)

loop do

if fringe is emptythen return failure
node«— REMOVE-FRONT(fringe)

if GoAL-TEsTprobleni applied to SATE(node succeedseturn node
fringe < INSERTALL(ExPAND(node problen), fringe)

function EXPAND(node, problemreturns a set of nodes

successors— the empty set

for each action, resultin SuccessoRFN[problenj(STATE[nodd) do

S« anew NODE

PARENT-NODE[S| «<— node ACTION[S] < action, STATE[s] < result
PATH-CoOsSTs] «— PATH-CosTnodg + STEP-COsT(node action, s)

DEPTHS| «+ DEPTHNodg + 1
addsto successors
return successors

o

24

-

Search strategiej

A strategy is defined by picking treder of node expansion

Strategies are evaluated along the following dimensions:

optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (maybg

.

completeness-does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexit-maximum number of nodes in memoryj

J

25

-

Uninformed search strategiej

Uninformedstrategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

Iterative deepening search

.

26

Breadth-first search'

Expand shallowest unexpanded node

Implementation
fringeis a FIFO queue, i.e., new successors go at end

>®

27

Breadth-first search'

Expand shallowest unexpanded node

Implementation
fringeis a FIFO queue, i.e., new successors go at end

(A)
> O

28

Breadth-first search'

Expand shallowest unexpanded node

Implementation
fringeis a FIFO queue, i.e., new successors go at end

(A)
(B) >(S
®

29

Breadth-first search'

Expand shallowest unexpanded node

Implementation
fringeis a FIFO queue, i.e., new successors go at end

(A)
(B) ©
>O ® G ©

30

Properties of breadth-first search'

Complet&?

31

Properties of breadth-first SearchI

Complet&?Yes (if b is finite)

Time??

N

32

Properties of breadth-first search'

Complet&?Yes (if b is finite)
Time??1 +b+ 0>+ b3+ ...+ b+ b(b? — 1) = O(b?T1), i.e., exp. ind
Space?

_ /

33

Properties of breadth-first search'

Complet@?Yes (if b is finite)
Time??1+ b+ b2 + 0% + ...+ b4+ b(b? — 1) = O(b4*1), i.e., exp. ind
Spac@?0(b?*1) (keeps every node in memory)

Optimal??

_ /

34

Properties of breadth-first search'

Complet&?Yes (if b is finite)
Time??1 +b+ 0>+ b3+ ...+ b+ b(b? — 1) = O(b?T1), i.e., exp. ind

Spac@?0(b?*1) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Spacds the big problem; can easily generate nodes at 10MB/sec
so 24hrs = 860GB.

_ /

35

4 N
Uniform-cost search.

Expand least-cost unexpanded node

Implementation
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
Complet@? Yes, if step cost e

Time??# of nodes withy < cost of optimal solution((b€ /1)
whereC'™ is the cost of the optimal solution

Space?# of nodes withy < cost of optimal solution((b€ "/<1)

OptimaP? Yes—nodes expanded in increasing ordey (of)

_ /

36

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

®

37

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

(®)
>® ©

38

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

39

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

40

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

41

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

42

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

43

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

44

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

(A
20

45

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

46

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

47

-

Depth-first search'

Expand deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

48

Properties of depth-first search'

Complet&?

49

Properties of depth-first search'

Complet@?No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
=- complete in finite spaces

Time??

50

Properties of depth-first search'

Complet@?No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
=- complete in finite spaces

Time??O(b™): terrible if m is much larger thad
but if solutions are dense, may be much faster than
breadth-first

Space?

_ /

51

Properties of depth-first search'

Complet@?No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
=- complete in finite spaces

Time??O(b™): terrible if m is much larger thad
but if solutions are dense, may be much faster than
breadth-first

Spac@?0(bm), i.e., linear space!

Optimaf?

_ /

52

-

Properties of depth-first search'

Complet@?No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time??O(b™): terrible if m is much larger thad
but if solutions are dense, may be much faster than
breadth-first

Spac@?0(bm), i.e., linear space!

OptimalP?No

.

53

Depth-limited search'

= depth-first search with depth limit
i.e., nodes at depthhave no successors
Recursive implementation

function DEPTH-LIMITED-SEARCH problemlimit) returns soln/fail/cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL -STATE[problen]), problem limit)

function RECURSIVE-DLS(node problem limit) returns soln/fail/cutoff
cutoff-occurred?— false
if GoAL-TEsT problenj(STATE[n0odd) then return node
else ifDEPTHNOdE = limit then return cutoff
else for eachsuccesson ExpAND(node problemn) do
result«— RECURSIVE-DLS(successqiproblem limit)
if result= cutoffthen cutoff-occurred2— true
else ifresult# failure then return result
if cutoff-occurred2hen return cutoffelse returnfailure

54

lterative deepening searct'

function ITERATIVE-DEEPENING SEARCH problen) returns a solution sequence
inputs: problem a problem

for depth« 0to co do
result«— DEPTH-LIMITED -SEARCH problem, depth
if result=# cutoff then return result

end
55
Iterative deepening search = OI
Limit = 0 1G] o

56

-

Iterative deepening searchl = 1 I

~

-

Limit=2

Limit=1 >® @ @
o e « e
57
Iterative deepening search = 2'
0]

~

@ @&
>
@ ®
@ &
)
>® © >©

P

58

Iterative deepening search = 3'

Limit=3 >®

59

Properties of iterative deepening searcl

Complet&?

60

Properties of iterative deepening searcl

Complet&?Yes

Time??

.

61

Properties of iterative deepening searcl

Complet&?Yes
Time?? (d + 1)b° + db' + (d — 1)b% + ... + b? = O(b?)
Space?

.

62

Properties of iterative deepening searcl

Complet®?Yes

Time?? (d + 1)b° + db' + (d — 1)b? + ... + b = O(b?)
Space?0(bd)

OptimaP?

.

63

-

Properties of iterative deepening searcl

Complet®?Yes
Time?? (d + 1)b° + dbt + (d — 1)b% + ...+ b? = O(b?)
Space?O(bd)

Optimal? Yes, if step cost =1
Can be modified to explore uniform-cost tree

Numerical comparison fdr = 10 andd = 5, solution at far right:

N(IDS) = 50+ 400+ 3,000 + 20,000 + 100,000 = 123,450

N(BFS) = 10+ 100+ 1,000 + 10,000 + 100,000 + 999,990 = 1,111, 100

.

)

64

Summary of aIgorithmsI

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete?| Yes Yes' No Yes, ifl > d Yes
Time pit! bIC™ /el b b be
Space pit1 plC /el bm bl bd
Optimal? Yes® Yes® No No Yes

_ /

65

4 ™
Repeated statel

Failure to detect repeated states can turn a linear problem into an
exponential one!

66

4 ™
Graph search'

function GRAPH-SEARCH(problem, fringé returns a solution, or failure

closed— an empty set
fringe< INSERT(MAKE-NODE(INITIAL -STATE[probleni), fringe)
loop do
if fringeis emptythen return failure
node— REMOVE-FRONT(fringe)
if GOAL-TEST[problenj(STATE[nodq) then return node
if STATE[nodq is not inclosedthen
add SATE[nodq to closed
fringe«— INSERTALL (EXPAND(node problen), fringe)
end

N /

67

Problem formulation usually requires abstracting away real-world detaj
to define a state space that can feasibly be explored

S

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

_ /

68

