Problem solving and search: Chapter 3, Sections 1-5

1

Outline

\diamond Problem-solving agents
\diamond Problem types
\diamond Problem formulation
\diamond Example problems
\diamond Basic search algorithms

Problem-solving agents

Restricted form of general agent:

3
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation
state \leftarrow UPDATE-STATE (state, percept)
if seq is empty then
goal \leftarrow FORMULATE-GOAL (state)
problem \leftarrow FORMULATE-PROBLEM $($ state, goal)
seq $\leftarrow \operatorname{SEARCH}($ problem $)$
action \leftarrow RECOMMENDATION (seq, state)
seq $\leftarrow \operatorname{REMAINDER}$ (seq, state)
return action

Note: this is offline problem solving; solution executed "eyes closed."
Online problem solving involves acting without complete knowledge.

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest
Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

5

Problem types

Deterministic, fully observable \Longrightarrow single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable \Longrightarrow conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \Longrightarrow contingency problem percepts provide new information about current state solution is a tree or policy often interleave search, execution

Unknown state space \Longrightarrow exploration problem ("online")

Example: vacuum world

Single-state, start in \#5. Solution??

Example: vacuum world

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$

e.g., Right goes to $\{2,4,6,8\}$. Solution??

9

Example: vacuum world

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$. Solution??

Contingency, start in \#5
Murphy's Law: Suck can dirty a clean car-
pet
Local sensing: dirt, location only.
Solution??

Example: vacuum world

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$

e.g., Right goes to $\{2,4,6,8\}$. Solution??
[Right, Suck, Left, Suck]

Contingency, start in \#5
Murphy's Law: Suck can dirty a clean car-
pet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

11

Single-state problem formulation

A problem is defined by four items:
initial state e.g., "at Arad"
successor function $S(x)=$ set of action-state pairs
e.g., $S($ Arad $)=\{<$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$
goal test, can be
explicit, e.g., $x=$ "at Bucharest"
implicit, e.g., NoDirt(x)
path cost (additive)
e.g., sum of distances, number of actions executed, etc. $c(x, a, y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex
\Rightarrow state space must be abstracted for problem solving
(Abstract) state $=$ set of real states
(Abstract) action $=$ complex combination of real actions
e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state "in Arad"
must get to some real state "in Zerind"
$($ Abstract $)$ solution $=$
set of real paths that are solutions in the real world
Each abstract action should be "easier" than the original problem!

Example: vacuum world state space graph

states??
actions??
goal test??
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for $N o O p$)

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled
actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)
function Tree-Search (problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Tree search example

21

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

$$
\text { includes parent, children, depth, path cost } g(x)
$$

States do not have parents, children, depth, or path cost!

The EXPAND function creates new nodes, filling in the various fields and using the SUCCESSORFN of the problem to create the corresponding states.

Implementation: general tree search

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
    fringe }\leftarrow\mathrm{ INSERT(MAKE-NODE(INITIAL-STATE[problem]),fringe)
    loop do
            if fringe is empty then return failure
            node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
            if GoAL-TEST[problem] applied to STATE(node) succeeds return node
            fringe }\leftarrowINSERTALL(EXPAND(node,problem),fringe
function EXPAND( node, problem) returns a set of nodes
    successors }\leftarrow\mathrm{ the empty set
    for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
            s}\leftarrow\mathrm{ a new NODE
            PaRENT-NODE[s]}\leftarrow node; ACtION[s]\leftarrow action;STATE[s]\leftarrow result
            Path-Cost[s]\leftarrow Path-Cost[node] + STEP-Cost(node,action,s)
            DEPTH[s]}\leftarrow DEPTH[node] + 1
            add s to successors
    return successors
```


Search strategies

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:
completeness-does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity-maximum number of nodes in memory optimality-does it always find a least-cost solution?

Time and space complexity are measured in terms of
b-maximum branching factor of the search tree
d-depth of the least-cost solution
m-maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

29

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

Complete??

31

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time??

Properties of breadth-first search

Complete?? Yes (if b is finite)
$\underline{\text { Time?? }} 1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space??

33

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)

Optimal??

Properties of breadth-first search

Complete?? Yes (if b is finite)
$\underline{\text { Time? }}$? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem; can easily generate nodes at $10 \mathrm{MB} / \mathrm{sec}$

$$
\text { so } 24 \mathrm{hrs}=860 \mathrm{~GB}
$$

Uniform-cost search

Expand least-cost unexpanded node
Implementation:

$$
\text { fringe }=\text { queue ordered by path cost }
$$

Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$
Time?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$
where C^{*} is the cost of the optimal solution
Space?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

37

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

39

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

41

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

43

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

45

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

47

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Properties of depth-first search

Complete??

49

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than
breadth-first
Space?? $O(b m)$, i.e., linear space!
Optimal?? No

Depth-limited search

$=$ depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```
function DEPTH-LIMITED-SEARCH(problem,limit) returns soln/fail/cutoff
    RECURSIVE-DLS(MAKE-NODE(InITIAL-STATE[problem]),problem, limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? }\leftarrow\mathrm{ false
    if GOAL-TEST[problem](STATE[node]) then return node
    else if DEPTH[node] = limit then return cutoff
    else for each successor in EXPAND(node,problem) do
        result }\leftarrow\mathrm{ RECURSIVE-DLS(successor,problem,limit)
            if result = cutoff then cutoff-occurred? }\leftarrow\mathrm{ true
            else if result }\not=\mathrm{ failure then return result
        if cutoff-occurred? then return cutoff else return failure
```


Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence inputs: problem, a problem
for depth $\leftarrow 0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH (problem, depth) if result \neq cutoff then return result
end

55

Iterative deepening search $l=0$

Limit $=0$ \qquad
\qquad

57

59

Properties of iterative deepening search

Complete??

Properties of iterative deepening search

Complete?? Yes
Time??

61

Properties of iterative deepening search

Complete?? Yes
$\underline{\text { Time? }} ?(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space??

Properties of iterative deepening search

Complete?? Yes
$\underline{\text { Time? ? }}(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal??

Properties of iterative deepening search

Complete?? Yes
$\underline{\text { Time? } ? ~}(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal?? Yes, if step cost $=1$
Can be modified to explore uniform-cost tree
Numerical comparison for $b=10$ and $d=5$, solution at far right:

$$
\begin{aligned}
& N(\mathrm{IDS})=50+400+3,000+20,000+100,000=123,450 \\
& N(\mathrm{BFS})=10+100+1,000+10,000+100,000+999,990=1,111,100
\end{aligned}
$$

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
A
B

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
closed \leftarrow an empty set
fringe $\leftarrow \operatorname{INSERT}($ MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow REMOVE-FRONT(fringe)
if Goal-TESt[problem](State%5Bnode%5D) then return node
if State[node] is not in closed then
add State[node] to closed
fringe \leftarrow INSERTALL(EXPAND(node, problem), fringe)
end

67

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies
Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

