First-order logic

Chapter 7, AIMA2e Chapter 8

1

Outline

- \diamondsuit Why FOL?
- ♦ Syntax and semantics of FOL
- ♦ Fun with sentences
- ♦ Wumpus world in FOL

Pros and cons of propositional logic

- Propositional logic is *declarative*: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is *compositional*: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is *context-independent* (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

3

First-order logic

Whereas propositional logic assumes world contains *facts*, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: father of, best friend, third inning of, one more than, beginning of . . .

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	degree of truth $\in [0,1]$	known interval value

5

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,...

Predicates $Brother, >, \dots$

Functions $Sqrt, LeftLegOf, \dots$

Variables x, y, a, b, \dots

Connectives $\land \lor \lnot \Rightarrow \Leftrightarrow$

Equality =

Quantifiers $\forall \exists$

Atomic sentences

Atomic sentence =
$$predicate(term_1, ..., term_n)$$

or $term_1 = term_2$

Term =
$$function(term_1, ..., term_n)$$

or $constant$ or $variable$

E.g.,
$$Brother(KingJohn, RichardTheLionheart)$$

> $(Length(LeftLegOf(Richard)),$
 $Length(LeftLegOf(KingJohn)))$

7

Complex sentences

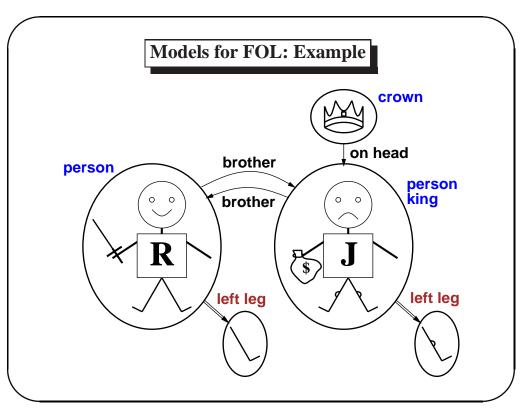
Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.
$$Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$$
 $> (1, 2) \lor \le (1, 2)$ $> (1, 2) \land \neg > (1, 2)$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation


Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

```
constant \ symbols \rightarrow objects
predicate \ symbols \rightarrow relations
function \ symbols \rightarrow functional \ relations
```

An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate

9

Models for FOL: Lots!

We *can* enumerate the models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects . . .

Computing entailment by enumerating models is not going to be easy!

11

Universal quantification

```
\forall < variables > < sentence >
```

Everyone at GMU is smart:

$$\forall x \ At(x, GMU) \Rightarrow Smart(x)$$

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

$$At(KingJohn, GMU) \Rightarrow Smart(KingJohn)$$

- $\land At(Richard, GMU) \Rightarrow Smart(Richard)$
- $\land At(Mason, GMU) \Rightarrow Smart(Mason)$
- Λ ...

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with \forall :

$$\forall x \ At(x, GMU) \land Smart(x)$$

means "Everyone is at GMU and everyone is smart"

13

Existential quantification

 $\exists < variables > < sentence >$

Someone at Madison is smart:

 $\exists x \ At(x, Madison) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

 $At(KingJohn, Madison) \land Smart(KingJohn)$

 \vee $At(Richard, Madison) \wedge Smart(Richard)$

 \vee $At(Madison, Madison) \wedge Smart(Madison)$

V ...

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Madison) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Madison!

15

Properties of quantifiers

```
\forall x \ \forall y  is the same as \forall y \ \forall x  (why??)
```

 $\exists x \ \exists y \ \text{ is the same as } \exists y \ \exists x \ \text{ (why??)}$

 $\exists\,x\;\;\forall\,y\quad\text{is not the same as}\;\forall\,y\;\;\exists\,x$

 $\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \ \exists x \ Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\forall x \ Likes(x, IceCream) \qquad \neg \exists \, x \ \neg Likes(x, IceCream)$

 $\exists\,x\ Likes(x, Broccoli) \qquad \neg\forall\,x\ \neg Likes(x, Broccoli)$

Brothers are siblings

17

Fun with sentences

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \Rightarrow Sibling(x,y).$

"Sibling" is symmetric

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

19

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall\, x,y\ Mother(x,y) \Leftrightarrow (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x, y \; FirstCousin(x, y) \Leftrightarrow$

 $\exists p, ps \ Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

21

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1=2$$
 and $\forall\,x\ \times (Sqrt(x),Sqrt(x))=x$ are satisfiable $2=2$ is valid

E.g., definition of (full) Sibling in terms of Parent:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists \, m, f \; \neg(m = f) \land \\ Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$

I.e., does the KB entail any particular actions at t = 5?

Answer: Yes, $\{a/Shoot\}$ \leftarrow substitution (binding list)

Given a sentence S and a substitution σ ,

 $S\sigma$ denotes the result of plugging σ into S; e.g.,

S = Smarter(x, y)

 $\sigma = \{x/Hillary, y/Bill\}$

 $S\sigma = Smarter(Hillary, Bill)$

Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

23

Knowledge base for the wumpus world

"Perception"

 $\forall\, b, g, t \;\; Percept([Smell, b, g], t) \Rightarrow Smelt(t)$

 $\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$

 $\textbf{Reflex:} \ \forall \ t \ \ AtGold(t) \Rightarrow Action(Grab,t)$

Reflex with internal state: do we have the gold already?

 $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

 $Holding(Gold,t) \ {\rm cannot} \ {\rm be} \ {\rm observed}$

 \Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:

 $\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)$

 $\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

$$\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$$

Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

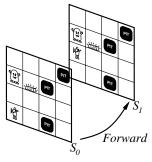
$$\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$$

25

Keeping track of change

Facts hold in situations, rather than eternally

E.g., Holding(Gold, Now) rather than just Holding(Gold)


Situation calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate

E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function

Result(a, s) is the situation that results from doing a in s

Describing actions I

```
"Effect" axiom—describe changes due to action \forall\,s\;\; AtGold(s) \Rightarrow Holding(Gold,Result(Grab,s))
```

"Frame" axiom—describe non-changes due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves,

27

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

P true afterwards \Leftrightarrow [an action made P true \lor P true already and no action made P false]

For holding the gold:

```
\forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow
[(a = Grab \land AtGold(s)) \\ \lor (Holding(Gold, s) \land a \neq Release)]
```

Making plans

Initial condition in KB:

$$At(Agent, [1, 1], S_0)$$

 $At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

29

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \ldots, a_n]$

PlanResult(p, s) is the result of executing p in s

Then the query $Ask(KB, \exists p \; Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

Definition of *PlanResult* in terms of *Result*:

```
\forall s \ PlanResult([], s) = s \forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))
```

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB