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/ Uncertainty I \

Let actionA; = leave for airport minutes before flight
Will A; get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: A5 will get me there on time”
or 2) leads to conclusions that are too weak for decision making:
“ Aos will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time
Qut I'd have to stay overnight in the airport.) /
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/ Methods for handling uncertainty I \

Defaultor nonmonotonidogic:
Assume my car does not have a flat tire
AssumeA,s works unless contradicted by evidence
Issues: What assumptions are reasonable? How to handle contradictipn?

Rules with fudge factors
Aoy —0.3 get there on time
Sprinkler gy 99 WetGrass
WetGrass —q 7 Rain
Issues: Problems with combination, e $§jprinkler causeRain??

Probability
Given the available evidencdys will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logichandlesdegree of trutiNOT uncertainty e.g.,

K WetGrass is true to degree 0.2) /
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/ Probability I \

Probabilistic assertiorsummarizeeffects of
lazinessfailure to enumerate exceptions, qualifications, etc.
ignorance lack of relevant facts, initial conditions, etc.

Subjectiveor Bayesiamprobability:
Probabilities relate propositions to one’s own state of knowledge
e.g.,P(Ass|no reported accidents= 0.06

These arenot claims of somerobabilistic tendencin the current
situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:
e.g.,P(Ass|no reported accident$ a.m) = 0.15

K(Analogous to logical entailment statésSB = «, not truth.) /
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Making decisions under uncertainty'

Suppose | believe the following:

P(Ay; gets me there ontime..) = 0.04

P(Ago gets me there ontinmje..) = 0.70

P(Aq5 gets me there ontime..) = 0.95
P(Aj440 gets me there ontinme..) = 0.9999

Which action to choose?
Depends on mypreference$or missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory= utility theory + probability theory

\_ /




/ Probability basics'

Begin with a sef)—thesample space
e.g., 6 possible rolls of a die.
w € Qis a sample point/possible world/atomic event

A probability spaceor probability modeis a sample space
with an assignmenP(w) for everyw € ) s.t.
0<Pw)<1
YoPw)=1
e.g.,.P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6.

An eventA is any subset of?

P(4) = Yueay P(w)

KE.g.,P(die roll<4)=1/6+1/6+1/6=1/2 /
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4 N
Random variables'

A random variablés a function from sample points to some range, e.g.
the reals or Booleans
e.g.,0dd(1) =true.

P induces grobability distributionfor any r.v. X:
P(X = JJZ) = E{w:X(w) :mi}P(w)

e.g.,.P(Odd=true) =1/6 +1/6+1/6 =1/2

\_ /




/ Propositions' \

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variablesand B:
eventa = set of sample points wher(w) = true
event—a = set of sample points wher(w) = false
eventa A b = points whered(w) =true and B(w) =true

Often in Al applications, the sample points akefined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables
With Boolean variables, sample point = propositional logic model
e.g.,A=true, B= false, ora A —b.
Proposition = disjunction of atomic events in which it is true
e.g.(aVvbd)=(-aAb)V(aA-b)V (aAb)

K:>P(a\/b):P(ﬂa/\b)—FP(a/\ﬂb)—FP(a/\b) /
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/ Why use probability? I \

The definitions imply that certain logically related events must have
related probabilities

E.0.,.P(aVvb) = P(a)+ P(b) — P(aND)

True

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of

Qutcome. j
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Syntax for propositions'

Propositionabr Booleanrandom variables
e.g.,Cavity (do | have a cavity?)

Discreterandom variabledifite or infinite)
e.g.,Weather is one of< sunny, rain, cloudy, snow >
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuousandom variablesioundedor unboundell
e.g.,Temp=21.6; also allow, e.g.T'emp < 22.0.

Arbitrary Boolean combinations of basic propositions

- /
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/ Prior probability I \

Prior or unconditional probabilitiesf propositions
e.g.,P(Cavity =true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distributiorgives values for all possible assignments:
P(Weather) =< 0.72,0.1,0.08,0.1 > (normalizedi.e., sums to 1)

Joint probability distributiorfor a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample poinf)
P(Weather, Cavity) = a4 x 2 matrix of values:

Weather = ‘ sunny rain cloudy snow
Cavity=true | 0.144 0.02 0.016 0.02
Cavity = false | 0.576  0.08 0.064 0.08

Every question about a domain can be answered by the joint distributi
because every event is a sum of sample points j
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/ Probability for continuous variables I \

Express distribution as a parameterized function of value:
P(X =x) = U[18, 26](x) = uniform density between 18 and 26

0.125
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Here P is adensity integrates to 1.
P(X =20.5) = 0.125 really means

26

lim P(20.5 < X < 20.5+ dz)/dx = 0.125

__ Y,

13

Gaussian densitﬂ

P(I) = 1 6_(x_ﬂ)2/202

2mo
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/ Conditional probability I \

Conditionalor posterior probabilities
e.g.,P(cavity|toothache) = 0.8
i.e.,given thattoothache is all | know
NOT “if toothache then 80% chance efuvity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g.cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific beliefmains validafter more evidence arrives,

but is not alwaysiseful

New evidence may be irrelevant, allowing simplification, e.qg.,
P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8
ths kind of inference, sanctioned by domain knowledge, is crucialj
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/ Conditional probability I \

Definition of conditional probability:
P(anD)
P(b)
Product rulggives an alternative formulation:

P(a Ab) = P(alb)P(b) = p(bla) P(a)

A general version holds for whole distributions, e.qg.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)
(View as a4 x 2 set of equationsjot matrix mult.)

P(alb) = if P(b) %0

Chain ruleis derived by successive application of product rule:
P(X1,....Xn) =P(X1,..., X01) P(X,,| Xq,..., Xp—1)

P(X1, ..., X0 o) P(Xp, | X1, ., Xnoo) P(Xn| X1, .o Xpt)

K =I7_  P(X;| Xy, ..., Xiq) j
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Inference by enumeration'

Start with the joint distribution:

toothache —1toothache

catch| — catcH catch| — catch
cavity] .108| .012 .072| .008
—1cavity] .016| .064 144 | 576

For any proposition, sum the atomic events where it is true:
P(¢) = Xy wpeP(w)

o
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Inference by enumeration'

Start with the joint distribution:

toothache —1toothache

catch| — catcH catch| — catch
cavity| .108| .012 .072| .008
- cavity| .016| .064 144 | 576

For any proposition, sum the atomic events where it is true:
P(¢) = Xy wpeP(w)
P(toothache) = 0.108 4+ 0.012 4+ 0.016 + 0.064 = 0.2

o
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Inference by enumeration'

Start with the joint distribution:

toothache —1toothache

catch| — catcH catch| — catch
cavity| .108| .012 .072| .008
- cavity| .016| .064 144 | 576

For any proposition, sum the atomic events where it is true:
P(¢) = EuwpeP (W)

P(cavity V toothache) =

0.108 +0.012 4 0.072 4 0.008 4+ 0.016 + 0.064 = 0.28

N
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/ Inference by enumeration'

Start with the joint distribution:

toothache —1toothache

catch| — catclf catch| — catcl
cavity] .108| .012 .072| .008
- cavity || .016 | .064 || .144 | .576

Can also compute conditional probabilities:

P(—cavity A toothache)
P(toothache)
0.016 + 0.064 B
0.108 +0.012 4 0.016 4 0.064

P(—cavity|toothache) =

N

0.4

)
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Normalization I \

toothache —1toothache

catch| — catchf catch| — catch
cavity ]|.108j|/.012 .072| .008

—1cavity]|.016/( |.064 144 576

Denominator can be viewed asiarmalization constani

P(Cavity|toothache) = a P(Cavity, toothache)

= «[P(Cavity, toothache, catch) + P(Cavity, toothache, —catch)]
— a[<0.108,0.016 > + < 0.012,0.064 >]

— o <0.12,0.08 >=< 0.6,0.4 >

General idea: compute distribution on query variable
Qy fixing evidence variableand summing ovehidden variables /
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Typically, we are interested in
the posterior joint distribution of thguery variabley
given specific values for theevidence variableg

Let thehidden variablepeH =X —Y — E

Inference by enumeration, contdl \

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y[E=e) =aP(Y,E=¢) = aXyP(Y,E=e H=h)
The terms in the summation are joint entries becatide, andH together
exhaust the set of random variables

Obvious problems:

1) Worst-case time complexity(d™) whered is the largest arity
2) Space complexity)(d™) to store the joint distribution
K 3) How to find the numbers fap (d™) entries??? j
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/ Independencﬂ \

A andB are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(A)P(B)

. Cavity
Cavity decomposes intoJoothache Catch
Toothache  Catch ‘

Weather

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity)P(W eather)

32 entries reduced to 12; farindependent biased coins! — n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
Qone of which are independent. What to do? /
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/ Conditional independencﬂ \

P(Toothache, Cavity, Catch) has2® — 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t
depend on whether | have a toothache:
(1) P(catchl|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catchl|toothache, ~cavity) = P(catch|—cavity)

Catch is conditionally independeraf T'oothache givenCawvity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) =

Q’(Toothache|C’avity)P(C’atch\C’avity) j
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Conditional independence contd'

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2+ 2+ 1=5independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size g
representation of the joint distribution from exponentiahimo linear in

n.

Conditional independence is our most basic and robust

form of knowledge about uncertain environments.

/
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/ Bayes’ RuIeI \

Product ruleP(a A b) = P(alb)P(b) = P(bla)P(a)

= Bayes' ruleP(alb) = %

or in distribution form

PX[Y)P(Y)
P(X)

Useful for assessingiagnostigprobability fromcausalprobability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

P(Y|X) = = aP(X|Y)P(Y)

P(Cause|Ef fect) =

E.g., letM be meningitisS be stiff neck:

slm)P(m) 0.8 x 0.0001

= = 0.0008
P(s) 0.1

P(mls) = il

Qote: posterior probability of meningitis still very small! j
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/ Bayes’ Rule and conditional independenc' \

P(Cavity|toothache A catch)
= «aP(toothache A catch|Cavity)P(Cavity)
= «aP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of naive Bayesnodel:

P(Cause, Ef fecty,...,Ef fect,) = P(Cause)IL,P(Ef fect;|Cause)

Com) Conee)
<o S

Qotal number of parameterslisearin n /
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Wumpus World I

14 2.4 34 a4
13 23 3,3 4,3
1,2 2,2 3,2 4,2
B

OK

11 2,1 3,1 4,1
B
OK OK

P;j =trueiff [ 4, j] contains a pit

B;j =trueiff [, j]is breezy
Include onlyB; i, Bj 2, B2 1 in the probability model

\_ /
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Specifying the probability model'

The full jOint distribution iSP(PLl, RN P474, B171, BLQ, BQJ)

Apply product rule:
P(B11,B12,B21 | Py, ..., Pya)P(Pr,. .., Pyg)

(Do it this way to getP(E f fect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
P(Pyy,...,Pya) =17 _ | P(P;)=02"x 08"

for n pits.

\_ /
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Observations and querz/l

We know the following facts:
b = _‘bl,l A b1’2 A b271
known = —p1 1 A =pi2 A —p2i

Query isP (P 3|known, b)

DefineUnknown = P;;s other tharnP,; 3 and Known

For inference by enumeration, we have
P (P slknown,b) = aXunknown P (P13, unknown, known, b)

Grows exponentially with number of squares!

\_ /
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/ Using conditional independencj \

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

() S - P - R iy E—

z

OTHER

S————m———m T

DefineUnknown = Fringe U Other
P(b| Py 3, Known, Unknown) = P(b| Py 3, Known, Fringe)

Q/Ianipulate query into a form where we can use this! /
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/ Using conditional independence contﬂ \

P (P 3lknown,b) = O‘ZunknownP(Plﬁv unknown, known, b)
= azunkmwnP(b|P1,3, known, unknown)P (P 3, known, unknown)
- aZfringeZotherP(b‘knownu Py 3, fringe, other) x

xP (P13, known, fringe, other)
= aZfrmgeZotherP(b\known, Py 3, fringe)P(Py 3, known, fringe, other)
- O‘mengep(b|k”0wnv Py 3, fringe)y . ., P(Pi3, known, fringe,other)
= OtzfrmgeP(anown,Pl’g,fringe) X

XY inerP(P13) P(known) P(fringe) P(other)
= aP(k:nown)P(P1,3)ZfrmgeP(b|known, P 3, fringe) P(fringe) x

XY .. P(other)
=d P(P173)Zfringep(b|kn0wna Py 3, fringe) P(fringe)

\_ /
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/ Using conditional independence contﬂ \

T, 22 T, 22 T, 22 T 22 T 22
B B B B B
oK . oK . oK oK ' oK '
11 21 31 11 21 31 11 21 31 11 21 31 11 21 31
B ) ) B B
oK oK . oK oK oK oK . oK oK . oK oK
0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16

P(Py slknown,b) = o <0.2(0.04+0.16 + 0.16), 0.8(0.04 + 0.16)
<0.31,0.69 >

Q

P (P 2|known,b) ~ <0.86,0.14 >

- /
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Probability is a rigorous formalism for uncertain knowledge

Joint probability distributiorspecifies probability of evergtomic event
Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independencandconditional independengeovide the tools

- /
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