

Outline

\diamond Syntax
\diamond Semantics
Parameterized distributions

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \operatorname{Parents}\left(\mathbf{X}_{\mathbf{i}}\right)\right)
$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Compactness

A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$) If each variable has no more than k parents,
 the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\mathbf{P}\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)=\prod_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \operatorname{Parents}\left(\mathbf{X}_{\mathbf{i}}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\mathbf{P}\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)=\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \operatorname{Parents}\left(\mathbf{X}_{\mathbf{i}}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)
$$

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children's parents

11

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that

$$
\mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \operatorname{Parents}\left(\mathbf{X}_{\mathbf{i}}\right)\right)=\mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{i}-\mathbf{1}}\right)
$$

This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right) & =\prod_{i=1}^{n} \mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{i}-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathbf{P}\left(\mathbf{X}_{\mathbf{i}} \mid \operatorname{Parents}\left(\mathbf{X}_{\mathbf{i}}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

Suppose we choose the ordering M, J, A, B, E

Alarm

$$
\begin{aligned}
& P(J \mid M)=P(J) ? \quad \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ?
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

Burglary
$P(J \mid M)=P(J)$? No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ? \quad$ No
$P(B \mid A, J, M)=P(B \mid A)$?
$P(B \mid A, J, M)=P(B)$?

Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M)=P(J) ? \quad$ No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A)$? No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(B \mid A, J, M)=P(B)$? No
$P(E \mid B, A, J, M)=P(E \mid A)$?
$P(E \mid B, A, J, M)=P(E \mid A, B)$?

Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M)=P(J)$? No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ? \quad$ No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(B \mid A, J, M)=P(B)$? No
$P(E \mid B, A, J, M)=P(E \mid A)$? No
$P(E \mid B, A, J, M)=P(E \mid A, B)$? Yes

Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions
Network is less compact: $1+2+4+2+4=13$ numbers needed

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

19

Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child
Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:
$X=f(\operatorname{Parents}(X))$ for some function f
E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian $\vee U S \vee$ Mexican
E.g., numerical relationships among continuous variables

$$
\frac{\partial L e v e l}{\partial t}=\text { inflow }+ \text { precipitation }- \text { outflow }- \text { evaporation }
$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	$\mathbf{0 . 0}$	1.0
F	F	T	0.9	$\mathbf{0 . 1}$
F	T	F	0.8	$\mathbf{0 . 2}$
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	$\mathbf{0 . 6}$
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization-possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy } ?=\text { true }) \\
& \quad=N\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& \quad=\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

All-continuous network with LG distributions
\Rightarrow full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}{ }^{x} N(0,1)(x) d x \\
& P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma)
\end{aligned}
$$

Why the probit?

1. It's sort of the right shape
2. Can view as hard threshold whose location is subject to noise

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence
Topology + CPTs $=$ compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) $=$ compact representation of CPTs

Continuous variables \Rightarrow parameterized distributions (e.g., linear Gaussian)

