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4 ™
Bayesian networkﬂ

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
aconditional probability tabl¢CPT) giving the
distribution overX; for each combination of parent values
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Topology of network encodes conditional independence assertions:
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Weather is independent of the other variables

Toothache andCatch are conditionally independent givéruvity
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burglar?

— A burglar can set the alarm off

— The alarm can cause Mary to call
— The alarm can cause John to call

.

I’'m at work, neighbor John calls to say my alarm is ringing, but neighb
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is therg

— An earthquake can set the alarm off

Variables:Burglar, Earthquake, Alarm, JohnCalls, M aryCalls
Network topology reflects “causal” knowledge:
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Example contd.'
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Compactnesj
A CPT for BooleanX; with k& Boolean parents has ;E)

2*rows for the combinations of parent values

Each row requires one numbefor X, = true }20\1
(the number forX; = false is justl — p) @ @
If each variable has no more tharparents,

the complete network requirés(n - 2¥) numbers

l.e., grows linearly with:, vs.O(2") for the full joint distribution

For burglary net] + 1 + 4 + 2 + 2 =10 numbers (vs2° — 1 = 31)
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Global semanticﬂ
Globalsemantics defines the full joint distribution @
S:

as the product of the local conditional distribution

P(X1,...,X,) = ﬁ P(X;|Parents(Xj;)) @ﬁ@

i=1

e.g.,.P(jAmAaA—-bA —e)
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Global semanticﬂ
Globalsemantics defines the full joint distribution @
S:

as the product of the local conditional distribution

P(X1,...,Xy) = ﬁ P(X;|Parents(X;)) @}E{@

e.g.,.P(jAmAaA—bA —e)

= P(jla)P(m]a) P(al-b, ~¢)P(~b) P(~¢)

.
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem:Local semantics> global semantics

.
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Markov blanket '

Each node is conditionally independent of all others given its
Markov blanket parents + children + children’s parents
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/ Constructing Bayesian networkﬂ \

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variabléas, ..., X,
2. Fori=1ton

add_X; to the network

select parents fromy', ..., X; ; such that

P(X;|Parents(X;)) = P(X;|Xq, ..., Xj-1)
This choice of parents guarantees the global semantics:

P(Xy,.... X, = [[P(XiXy ... Xi1) (chainrule)
=1

= HP(Xi|Parents(Xi)) (by construction)

N J
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Suppose we choose the orderihg ./, A, B, £

P(J|M) = P(J)?

g

Suppose we choose the orderihg ./, A, B,

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A]J, M) = P(A)?

.
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Suppose we choose the orderihg ./, A, B, £

=D

NP =

Burglary

P(J|M) = P(J)? No

P(A|J, M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J,M) = P(B|A)?

P(B|A,J, M) = P(B)?

.
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Suppose we choose the orderihg ./, A, B,

Burglary

Earthquake
P(J|M) = P(J)? No

(
P(A|J, M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J,M) = P(B|A)? Yes
P(B|A,J,M)=P(B)? No
(
(

P(E|B, A, J,M)= P(E|A)?
Q E|B,A,J,M) = P(E|A, B)?
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Suppose we choose the orderihg ./, A, B, £

Burglary

Earthquake

P(J

P(A|J, M) = P(A|J)? P(A|J,M) = P(A)? No

P(B|A,J, M) = P(B|A)? Yes

P(B|A,J,M)=P(B)? No
(
(

M) = P(J)? No

P(E|B,A,J,M)= P(E|A)? No
Q E|B,A,J,M)= P(E|A,B)? Yes
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/ Example contd.'

Burglary

Earthquake

humans!)

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for

Assessing conditional probabilities is hard in noncausal directions

Qetwork is less compact: + 2 4 4 + 2 + 4 = 13 numbers needed /

18



/ Example: Car diagnosifl \

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
battery age

starter
broken
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/ Compact conditional distributions I

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution:canonicaldistributions that are defined compactly

Deterministicnodes are the simplest case:
X = f(Parents(X)) for some functionf

E.g., Boolean functions
NorthAmerican < Canadian VvV US V Mezican

E.g., numerical relationships among continuous variables

OLewvel

5 = inflow + precipitation - outflow - evaporation

.

~

/
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/ Compact conditional distributions contd.'

Noisy-ORdistributions model multiple noninteracting causes
1) Parents/, ... U, include all causes (can adiebk nod¢
2) Independent failure probability for each cause alone

iP(X‘UlU/HﬁUI_HﬁUA):l— '72:1(]2‘

Cold Flu Malaria | P(Fever) | P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=10.6 x 0.2

T T T 0.988 0.012 =0.6 x 0.2 x 0.1

Qumber of parameteigear in number of parents
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Hybrid (discrete+continuous) networks' \

Discrete Gubsidy? and Buys?); continuous ({ arvest andC'ost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (€@)
Q Discrete variable, continuous parents (ef§:ys?)

J
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Continuous child variables'

Need oneconditional densityunction for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is théinear Gaussiamodel, e.qg.,:

P(Cost =c|Harvest =h, Subsidy? =true)

= N(ath + by, 04)(c)

(=)

MeanC'ost varies linearly with/ arvest, variance is fixed

Linear variation is unreasonable over the full range
K but works OK if thelikely range ofH arvest is narrow

)




/ Continuous child variables'

P(c | h, subsidy)
0.4

0
2 4
4
6 2
Coste 8 10 12 0 Harvest h

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

KOf discrete variable values

Discrete+continuous LG network iscenditional Gaussianetwork i.e., a
multivariate Gaussian over all continuous variables for each combinati

~

J
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/ Discrete variable w/ continuous parentj
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Probitdistribution uses integral of Gaussian:

O(x) = [ *N(0,1)(x)dx
P(Buys?=true | Cost=c¢) = ®((—c+ u)/o)

Probability of Buys? givenCost should be a “soft” threshold:
1 T T T T T
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Why the probit? I

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

VAN
@ @ @

Buys? |
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/ Discrete variable contd.'

Sigmoid(or logit) distribution also used in neural networks:

1
1+ exp(—2=SH)

P(Buys? =true

Cost=c) =

Sigmoid has similar shape to probit but much longer tails:
1 T T T r T

09 -
0.8 r
0.7
06 r
05 r
0.4 -
03 r
0.2
0.1

P(Buys?=false|Cost=c)

8 10 12
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Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of
CPTs

Continuous variabless- parameterized distributions (e.qg., linear
Gaussian)

\_ /
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