

Learning element

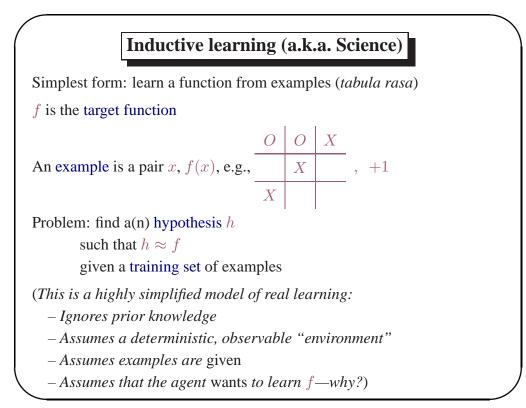
Design of learning element is dictated by

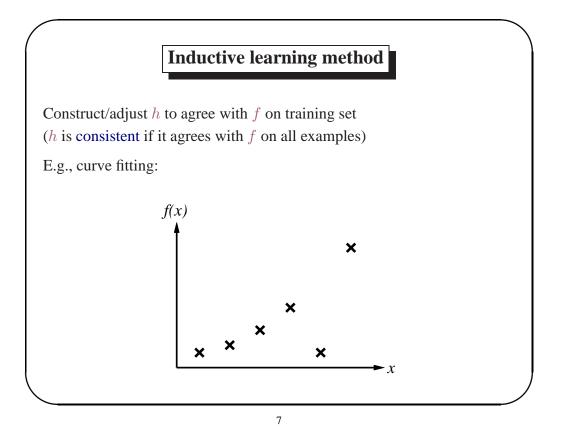
- \diamond what type of performance element is used
- \diamond which functional component is to be learned
- \diamond how that functional compoent is represented
- \diamond what kind of feedback is available

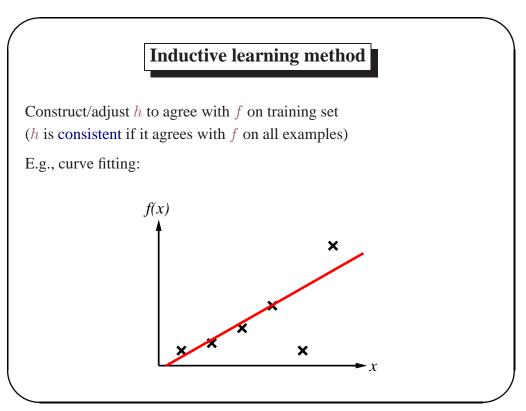
Example scenarios:

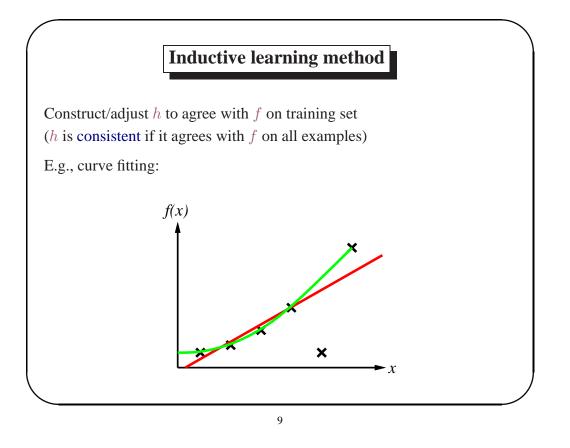
Performance element	Component	Representation	Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

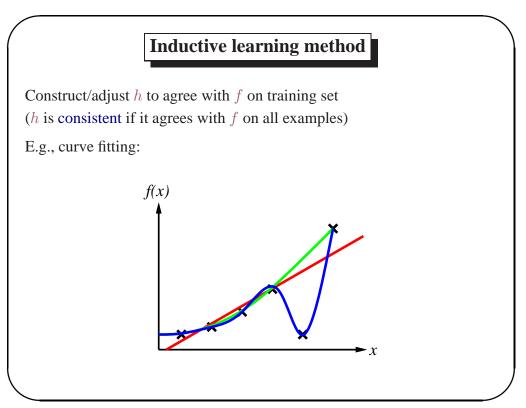
Supervised learning: correct answers for each instance Reinforcement learning: occasional rewards

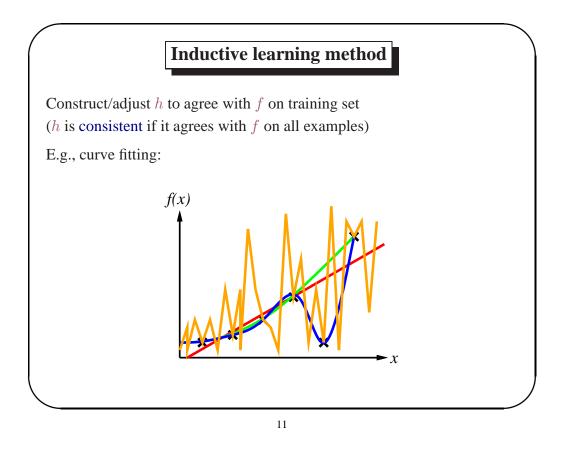


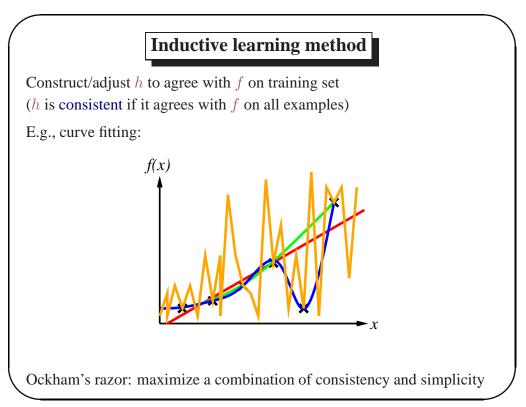








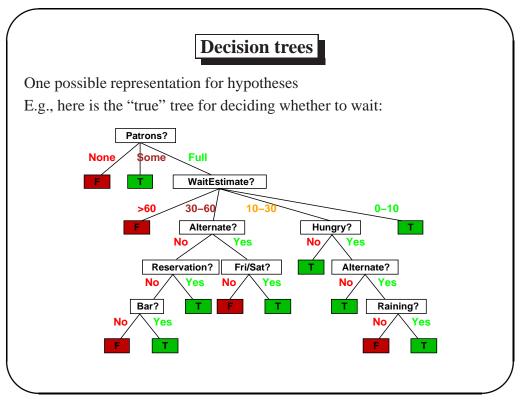


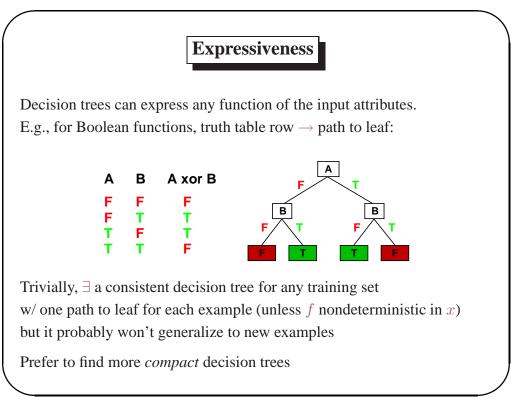


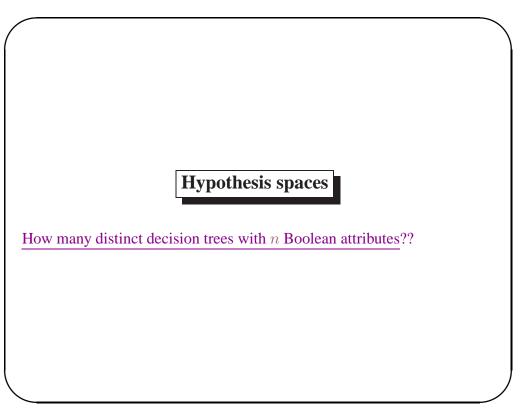
Attribute-based representations

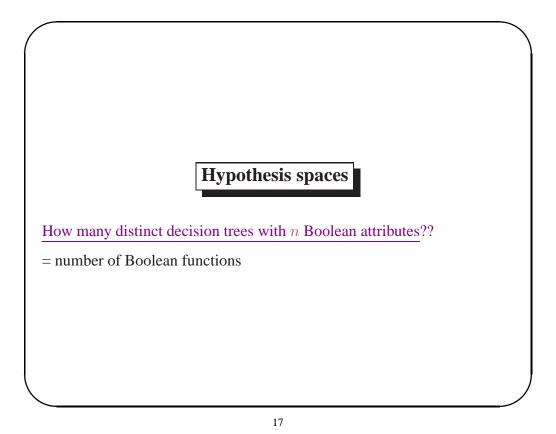
Examples described by attribute values (Bool., discrete, continuous, etc.)
E.g., situations where I will/won't wait for a table:

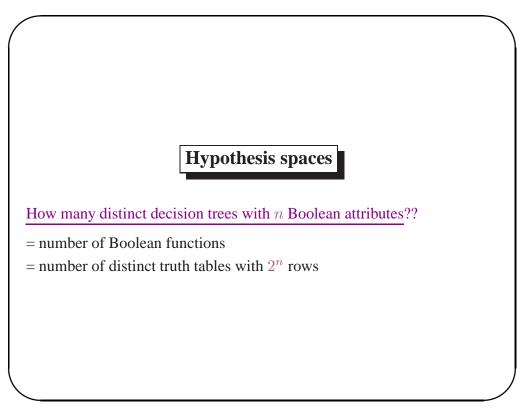
Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

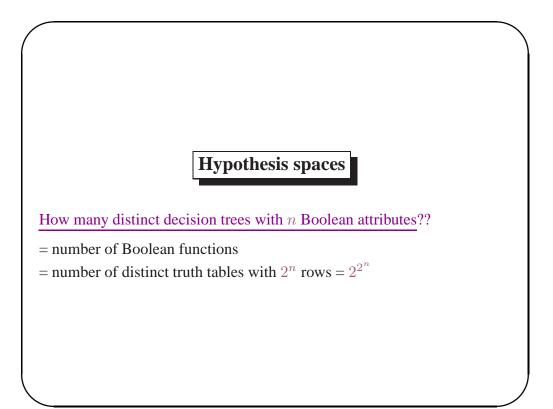












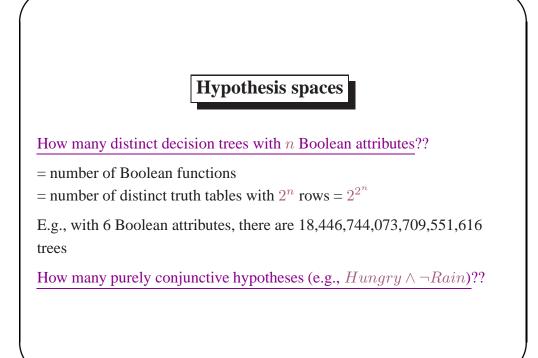
Hypothesis spaces

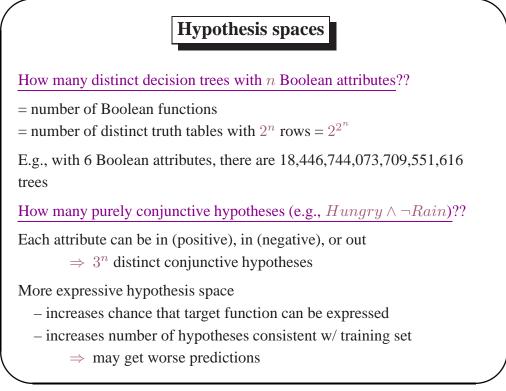
How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

= number of distinct truth tables with $2^n \text{ rows} = 2^{2^n}$

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees



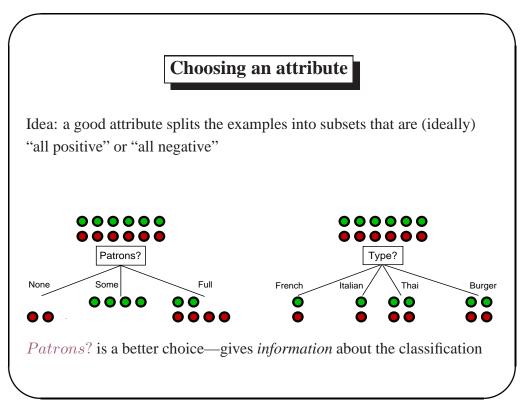


Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return MODE(examples) else $best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)$ $tree \leftarrow a$ new decision tree with root test best for each value v_i of best do $examples_i \leftarrow \{elements of examples with best = v_i\}$ $subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))$ add a branch to tree with label v_i and subtree subtree return tree



Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior < 0.5, 0.5 >

Information in an answer when prior is $\langle P_1, \ldots, P_n \rangle$ is

$$H(\langle P_1, \dots, P_n \rangle) = \sum_{i=1}^n - P_i \log_2 P_i$$

(also called entropy of the prior)

25

Information contd.

Suppose we have p positive and n negative examples at the root $\Rightarrow H(\langle p/(p+n), n/(p+n) \rangle)$ bits needed to classify a new

example

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

Let E_i have p_i positive and n_i negative examples

 $\Rightarrow H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i) \rangle)$ bits needed to classify a new example

 \Rightarrow *expected* number of bits per example over all branches is

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H(\langle p_{i}/(p_{i} + n_{i}), n_{i}/(p_{i} + n_{i}) \rangle)$$

For *Patrons*?, this is 0.459 bits, for *Type* this is (still) 1 bit

 \Rightarrow choose the attribute that minimizes the remaining information needed

