

Outline

\diamond Learning agents
\diamond Inductive learning
\diamond Decision tree learning
(Next lecture covers neural networks)

Learning

Learning is essential for unknown environments, i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent's decision mechanisms to improve performance

Learning element

Design of learning element is dictated by
\diamond what type of performance element is used
\diamond which functional component is to be learned
\diamond how that functional compoent is represented
\diamond what kind of feedback is available
Example scenarios:

Performance element	Component	Representation	Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards

Simplest form: learn a function from examples (tabula rasa)
f is the target function

An example is a pair $x, f(x)$, e.g., | O | O | X |
| :--- | :--- | :--- |
| X | X | |
| X | | |,+1

Problem: find a(n) hypothesis h
such that $h \approx f$
given a training set of examples
(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn f-why?)

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

7

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

9

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

11

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Ockham's razor: maximize a combination of consistency and simplicity

Attribute-based representations

Examples described by attribute values (Bool., discrete, continuous, etc.)
E.g., situations where I will/won't wait for a table:

| Example | Attributes | | | | | | | | | Target | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait |
| X_{1} | T | F | F | T | Some | $\$ \$ \$$ | F | T | French | $0-10$ | T |
| X_{2} | T | F | F | T | Full | $\$$ | F | F | Thai | $30-60$ | F |
| X_{3} | F | T | F | F | Some | $\$$ | F | F | Burger | $0-10$ | T |
| X_{4} | T | F | T | T | Full | $\$$ | F | F | Thai | $10-30$ | T |
| X_{5} | T | F | T | F | Full | $\$ \$ \$$ | F | T | French | >60 | F |
| X_{6} | F | T | F | T | Some | $\$ \$$ | T | T | Italian | $0-10$ | T |
| X_{7} | F | T | F | F | None | $\$$ | T | F | Burger | $0-10$ | F |
| X_{8} | F | F | F | T | Some | $\$ \$$ | T | T | Thai | $0-10$ | T |
| X_{9} | F | T | T | F | Full | $\$$ | T | F | Burger | >60 | F |
| X_{10} | T | T | T | T | Full | $\$ \$ \$$ | F | T | Italian | $10-30$ | F |
| X_{11} | F | F | F | F | None | $\$$ | F | F | Thai | $0-10$ | F |
| X_{12} | T | T | T | T | Full | $\$$ | F | F | Burger | $30-60$ | T |

Classification of examples is positive (T) or negative (F)

Decision trees

One possible representation for hypotheses
E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, \exists a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won't generalize to new examples
Prefer to find more compact decision trees

Hypothesis spaces

$\underline{\text { How many distinct decision trees with } n \text { Boolean attributes?? }}$

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions

17

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
$\underline{\text { How many purely conjunctive hypotheses (e.g., Hungry } \wedge \neg \text { Rain)?? }}$

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)??
Each attribute can be in (positive), in (negative), or out
$\Rightarrow 3^{n}$ distinct conjunctive hypotheses
More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
\Rightarrow may get worse predictions

Decision tree learning

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose "most significant" attribute as root of (sub)tree
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else
best \leftarrow Choose-ATTRIBUTE(attributes, examples)
tree \leftarrow a new decision tree with root test best
for each value v_{i} of best do
examples $_{i} \leftarrow$ \{elements of examples with best $\left.=v_{i}\right\}$
subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, $\operatorname{MODE}($ examples $\left.)\right)$
add a branch to tree with label v_{i} and subtree subtree
return tree

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives information about the classification

Information

Information answers questions
The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior $\langle 0.5,0.5\rangle$
Information in an answer when prior is $<P_{1}, \ldots, P_{n}>$ is

$$
H\left(<P_{1}, \ldots, P_{n}>\right)=\sum_{i=1}^{n}-P_{i} \log _{2} P_{i}
$$

(also called entropy of the prior)

Information contd.

Suppose we have p positive and n negative examples at the root $\Rightarrow H(<p /(p+n), n /(p+n)>)$ bits needed to classify a new example
E.g., for 12 restaurant examples, $p=n=6$ so we need 1 bit

An attribute splits the examples E into subsets E_{i}, each of which (we hope) needs less information to complete the classification

Let E_{i} have p_{i} positive and n_{i} negative examples
$\Rightarrow H\left(<p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)>\right)$ bits needed to classify a new
example
\Rightarrow expected number of bits per example over all branches is

$$
\sum_{i} \frac{p_{i}+n_{i}}{p+n} H\left(<p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)>\right)
$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
\Rightarrow choose the attribute that minimizes the remaining information needed

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree-a more complex hypothesis isn't justified by small amount of data

Performance measurement

How do we know that $h \approx f$? (Hume's Problem of Induction)

1) Use theorems of computational/statistical learning theory
2) Try h on a new test set of examples
(use same distribution over example space as training set)
Learning curve $=\%$ correct on test set as a function of training set size

Performance measurement contd.

Learning curve depends on

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)

Summary

Learning needed for unknown environments, lazy designers
Learning agent $=$ performance element + learning element
Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples

Decision tree learning using information gain
Learning performance $=$ prediction accuracy measured on test set

