Informed search algorithmsI

¢ Best-first search
{ A* search

{> Heuristics

<& Hill-climbing

¢ Simulated annealing

o

4 N
Review: Tree searct'

function TREE-SEARCH(problem, fringé returns a solution, or failure
fringe< INSERT(MAKE-NODE(INITIAL -STATE[probleni), fringe)
loop do
if fringeis emptythen return failure
node— REMOVE-FRONT(fringe)
if GoAL-TEsT[probleni applied to SATE(nodé succeedseturn node
fringe < INSERTALL (EXPAND(node problen), fringe)

A strategy is defined by picking trerder of node expansion

_ /

4 N
Best-first search'

Idea: use amvaluation functiorfor each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation
fringeis a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

_ /

-

Romania with step costs in kEI

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
92 Fagaras
Giurgiu
[Vaslui Hirsova
lasi
Lugoj
Mehadia
Neamt
Oradea
98 0 Hirsov Pitesti
sova Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Eforie Vaslui
Zerind

Sibiu g9 Fagaras

Rimnicu Vilcea

Pitesti

Straight-line distance

~

366
0
160
242
161
178
7
151
226
244
241
234
380
98
193
253
329
80
199
374

J

Greedy searcu

Evaluation functiorh(n) (heuristic)
= estimate of cost from to the closest goal

E.g.,hspp(n) = straight-line distance from to Bucharest

Greedy search expands the node Hygieardo be closest to goal

.

Greedy search examplj

366

253

Greedy search examplj

> Sibiu_D imisoara)
329

Greedy search examplj

>CFagaras >

366 176 380 193

Greedy search examplj

10

Properties of greedy searct'

Complet&?

11

Properties of greedy searct'

Complet®?No—can get stuck in loops, e.g., with Oradea as goal,
lasi— Neamt— lasi— Neamt—
Complete in finite space with repeated-state checking

Time??

.

12

Properties of greedy searct'

Complet®@?No—can get stuck in loops, e.g.,
lasi— Neamt— lasi— Neamt—
Complete in finite space with repeated-state checking

Time??O(b™), but a good heuristic can give dramatic improvement

Space?

_ /

13

Properties of greedy searct'

Complet®?No—can get stuck in loops, e.g.,
lasi— Neamt— lasi— Neamt—
Complete in finite space with repeated-state checking

Time??O(b™), but a good heuristic can give dramatic improvement
Space?O(b™)—keeps all nodes in memory

Optimal??

_ /

14

Properties of greedy searct'

Complet®?No—can get stuck in loops, e.g.,
lasi— Neamt— lasi— Neamt—
Complete in finite space with repeated-state checking

Time??O(b™), but a good heuristic can give dramatic improvement
Spac@?0(b™)—keeps all nodes in memory

Optimal??No

_ /

15

4)

Idea: avoid expanding paths that are already expensive
Evaluation functionf(n) = g(n) + h(n)

g(n) = cost so far to reach
h(n) = estimated cost to goal from
f(n) = estimated total cost of path througtto goal

A* search uses aadmissibleheuristic
i.e.,h(n) < h*(n) whereh*(n) is thetrue cost fromn.
(Also requireh(n) > 0, soh(G) = 0 for any goalG.)

E.g.,hsLp(n) never overestimates the actual road distance
Theorem A* search is optimal

_ /

16

A* search examplﬂ

366=0+366

17

A* search examplﬂ

393=140+253 447=118+329 449=75+374

18

A* search examplﬂ

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

N /

19

A* search examplﬂ

449=75+374

526=366+160 417=317+100 553=300+253

20

A* search examplﬂ

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

21

A* search examplﬂ

449=75+374

591=338+253 450=450+0 526=366+160

418=418+0 615=455+160 607=414+193

22

/ Optimality of A * (standard proof) I \

Suppose some suboptimal géal has been generated and is in the queye.

Letn be an unexpanded node on a shortest path to an optimad-goal
Start

I

GO G,
f(Ga) = ¢g(Ga) since h(G3) =0
> g(Gy) since G5 is suboptimal
> f(n) since h is admissible
Qincef(Gg) > f(n), A* will never seleci, for expansion j

23

~

/ Optimality of A * (more useful)'

Lemma A* expands nodes in order of increasifigalue

Gradually adds f-contours” of nodes (cf. breadth-first adds layers)
Contouri has all nodes witlf = f;, wheref; < f;11

24

Properties of A* I

Complet&?

25

Properties of A* I

Complet@?Yes, unless there are infinitely many nodes witk f(G)

Time??

o

26

Properties of A* I

Complet®?Yes, unless there are infinitely many nodes witk f(G)
Time?? Exponential in [relative error ih x length of soln.]

Space?

.

27

Properties of A* I

Complet@?Yes, unless there are infinitely many nodes witk f(G)
Time?? Exponential in [relative error ih x length of soln.]
Spac@?Keeps all nodes in memory

Optimaf?

.

28

4 ™
Properties of A* I

Complet@?Yes, unless there are infinitely many nodes witk f(G)

Time?? Exponential in [relative error ih x length of soln.]
Spacé@?Keeps all nodes in memory
Optimal? Yes—cannot expand, ., until f; is finished

A* expands all nodes witfi(n) < C*
A* expands some nodes wiftin) = C*
A* expands no nodes with(n) > C*

_ /

29

Proof of lemma: Consistencﬂ

A heuristic isconsistentf

h(n) <ec(n,a,n’) + h(n')
c(n,a,n’

If his consistent, we have
f') = g®)+h»n)
= g(n)+c(n,a,n’) + h(n')
> g(n)+ h(n)
(

n)

h(n’)

—

l.e., f(n) is nondecreasing along any path.

_ /

30

Admissible heuristics'

E.qg., for the 8-puzzle:

hi(n) = number of misplaced tiles
hs(n) = total Manhattardistance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3
6 ||| 1] 8 8 4
7 3 2 7 6 5
Start State Goal State
hi(S) =?7?
ha(S) =27
-
31

Admissible heuristics'

E.qg., for the 8-puzzle:

hi(n) = number of misplaced tiles
hs(n) = total Manhattardistance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

hi(S) =??7
ho(S) =??4+0+3+3+1+0+2+1 = 14

N

32

4 N
Dominance'

If ha(n) > hy(n) for all n (both admissible)
thenh, dominatesh; and is better for search

Typical search costs:

d=14 IDS =3,473,941 nodes
A*(hy) =539 nodes
A*(hy) =113 nodes

d =24 DS~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hg) = 1,641 nodes

33

4 ™
Relaxed problemﬂ

Admissible heuristics can be derived from #hect
solution cost of aelaxedversion of the problem

If the rules of the 8-puzzle are relaxed so that a tile can naoysvhere
thenh, (n) gives the shortest solution

If the rules are relaxed so that a tile can movang adjacent squarehen
hs(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

_ /

34

Relaxed problems contd'

Well-known exampletravelling salesperson problefiSP)
Find the shortest tour visiting all cities exactly once

¢ < X
@

Minimum spanning treean be computed i®(n

and is a lower bound on the shortest (open) tour

35

Iterative improvement algorithms I

In many optimization problemgpathis irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimalconfiguration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetabils

In such cases, can ugerative improvemeralgorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

_ /

36

1%

Example: Travelling Salesperson Proble:'

Start with any complete tour, perform pairwise exchanges

37

4 N
Example: n-queena

Putn queens on an x n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

38

-

Hill-climbing (or gradient ascent/descent)'

“Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING (problen) returns a state that is a local maximum
inputs: problem a problem
local variables current a node
neighbor a node

current— MAKE-NODE(INITIAL -STATE[probleni)

loop do
neighbor— a highest-valued successoraifrrent
if VALUE[neighbor]< VALUE][current]then return STATE[curren{
current«<— neighbor

end

_ /

39

4 ™
Hill-climbing contd. I

Problem: depending on initial state, can get stuck on local maxima

global maximum

value

local maximum

states

In continuous spaces, problems w/ choosing step size, slow conve?vce

.

40

/ Simulated annealing' \

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED -ANNEALING(problem, schedu)ereturns a solution state
inputs: problem a problem
schedulea mapping from time to “temperature”
local variables current a node
next a node
T, a “temperature” controlling prob. of downward steps

current«— MAKE-NODE(INITIAL -STATE[problen])
for t«<— 1to oo do

T « schedul]

if T=0then return current

next«— a randomly selected successorcafrent

AE « VALUE[nex] — VALUE[curren{

if AE > Othen current«— next

elsecurrent« nextonly with probabilitye® #/7

41

Properties of simulated annealing

At fixed “temperature™l’, state occupation probability reaches
Boltzman distribution

T decreased slowly enough= always reach best state

Is this necessarily an interesting guarafftze

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

_ /

42

