Informed search algorithms Chapter 4 Outline - ♦ Best-first search - \diamondsuit A* search - ♦ Heuristics - ♦ Hill-climbing - ♦ Simulated annealing ## Review: Tree search function TREE-SEARCH(problem, fringe) returns a solution, or failure $fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)$ loop do if fringe is empty then return failure $node \leftarrow Remove-Front(fringe)$ **if** GOAL-TEST[problem] applied to STATE(node) succeeds **return** node $fringe \leftarrow Insertall(Expand(node, problem), fringe)$ A strategy is defined by picking the *order of node expansion* #### **Best-first search** Idea: use an evaluation function for each node - estimate of "desirability" ⇒ Expand most desirable unexpanded node #### Implementation: fringe is a queue sorted in decreasing order of desirability Special cases: greedy search A* search #### Romania with step costs in km Straight-line distance to Bucharest Arad Bucharest 366 Craiova 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj Mehadia 244 241 Neamt 234 Oradea Pitesti Rimnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374 5 #### **Greedy search** Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal E.g., $h_{\rm SLD}(n)$ = straight-line distance from n to Bucharest Greedy search expands the node that appears to be closest to goal ## **Properties of greedy search** $\frac{\text{Complete}?? \text{ No--can get stuck in loops, e.g., with Oradea as goal,}}{\text{Iasi} \rightarrow \text{Neamt} \rightarrow \text{Iasi} \rightarrow \text{Neamt} \rightarrow}$ Complete in finite space with repeated-state checking Time?? #### Properties of greedy search Complete?? No-can get stuck in loops, e.g., $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$ Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement Space?? 13 #### **Properties of greedy search** Complete?? No-can get stuck in loops, e.g., $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$ Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement Space?? $O(b^m)$ —keeps all nodes in memory Optimal?? #### **Properties of greedy search** Complete?? No-can get stuck in loops, e.g., $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$ Complete in finite space with repeated-state checking $\underline{\text{Time}}$?? $O(b^m)$, but a good heuristic can give dramatic improvement Space?? $O(b^m)$ —keeps all nodes in memory Optimal?? No 15 #### \mathbf{A}^* search Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) $g(n) = \cos t$ so far to reach n h(n) = estimated cost to goal from n f(n) = estimated total cost of path through n to goal A* search uses an *admissible* heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.) E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance Theorem: A* search is optimal ## Optimality of A* (standard proof) Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 . $$f(G_2) = g(G_2)$$ since $h(G_2) = 0$ > $g(G_1)$ since G_2 is suboptimal $\geq f(n)$ since h is admissible Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion 23 ## Optimality of A* (more useful) Lemma: A^* expands nodes in order of increasing f value* Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$ # Properties of A* $\underline{\underline{\text{Complete}}?? \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)}\\ \underline{\underline{\text{Time}}??}$ ## Properties of A* <u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$ <u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.] Space?? 27 ## **Properties of A*** $\underline{\text{Complete}} ?? \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)$ $\underline{\text{Time}}$?? Exponential in [relative error in $h \times \text{length of soln.}$] Space?? Keeps all nodes in memory Optimal?? #### **Properties of A*** Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$ <u>Time</u>?? Exponential in [relative error in $h \times \text{length of soln.}$] Space?? Keeps all nodes in memory Optimal?? Yes—cannot expand f_{i+1} until f_i is finished A^* expands all nodes with $f(n) < C^*$ A^* expands some nodes with $f(n) = C^*$ A^* expands no nodes with $f(n) > C^*$ 29 ## **Proof of lemma: Consistency** A heuristic is *consistent* if A heuristic is *consistent* if $$h(n) \leq c(n,a,n') + h(n')$$ $$f(n') = g(n') + h(n')$$ $$= g(n) + c(n,a,n') + h(n')$$ $$\geq g(n) + h(n)$$ $\geq g(n) + h(n)$ = f(n) I.e., f(n) is nondecreasing along any path. ## **Admissible heuristics** E.g., for the 8-puzzle: $h_1(n)$ = number of misplaced tiles $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile) | 5 | 4 | | |---|---|---| | 6 | 1 | 8 | | 7 | 3 | 2 | Start State Goal State $$h_1(S) = ??$$ $\overline{h_2(S)} = ??$ 31 ## Admissible heuristics E.g., for the 8-puzzle: $h_1(n)$ = number of misplaced tiles $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile) | 5 | 4 | | |---|---|---| | 6 | 1 | 8 | | 7 | 3 | 2 | Start State Goal State $$h_1(S) = ?? 7$$ $h_2(S) = ?? 4+0+3+3+1+0+2+1 = 14$ #### **Dominance** If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search Typical search costs: $$d = 14$$ IDS = 3,473,941 nodes $$A^*(h_1) = 539$$ nodes $$A^*(h_2) = 113 \text{ nodes}$$ $$d = 24$$ IDS $\approx 54,000,000,000$ nodes $$A^*(h_1) = 39,135$$ nodes $$A^*(h_2) = 1,641$$ nodes 33 #### Relaxed problems Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem If the rules of the 8-puzzle are relaxed so that a tile can move *anywhere*, then $h_1(n)$ gives the shortest solution If the rules are relaxed so that a tile can move to *any adjacent square*, then $h_2(n)$ gives the shortest solution Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem ## Relaxed problems contd. Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour 35 #### **Iterative improvement algorithms** In many optimization problems, *path* is irrelevant; the goal state itself is the solution Then state space = set of "complete" configurations; find *optimal* configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable In such cases, can use *iterative improvement* algorithms; keep a single "current" state, try to improve it Constant space, suitable for online as well as offline search ## **Example: Travelling Salesperson Problem** Start with any complete tour, perform pairwise exchanges 37 ## **Example:** *n***-queens** Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal Move a queen to reduce number of conflicts #### Hill-climbing (or gradient ascent/descent) "Like climbing Everest in thick fog with amnesia" 39 ## Hill-climbing contd. Problem: depending on initial state, can get stuck on local maxima In continuous spaces, problems w/ choosing step size, slow convergence #### Simulated annealing Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency $\textbf{function} \ \textbf{S} \textbf{IMULATED-ANNEALING} (\textit{problem}, \textit{schedule}) \ \textbf{returns} \ \textbf{a} \ \textbf{solution} \ \textbf{state}$ inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ **if** T = 0 **then return** *current* $next \leftarrow$ a randomly selected successor of *current* $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$ if $\Delta E > 0$ then $current \leftarrow next$ $\textbf{else} \ \textit{current} \leftarrow \textit{next} \ \text{only with probability} \ e^{\Delta \ E/T}$ 41 ## **Properties of simulated annealing** At fixed "temperature" T, state occupation probability reaches Boltzman distribution $$p(x) = \alpha e^{\frac{E(x)}{kT}}$$ T decreased slowly enough \Longrightarrow always reach best state Is this necessarily an interesting guarantee?? Devised by Metropolis et al., 1953, for physical process modelling Widely used in VLSI layout, airline scheduling, etc.