Informed search algorithms

Chapter 4

Outline

- ♦ Best-first search
- \diamondsuit A* search
- ♦ Heuristics
- ♦ Hill-climbing
- ♦ Simulated annealing

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure $fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)$ loop do

if fringe is empty then return failure

 $node \leftarrow Remove-Front(fringe)$

if GOAL-TEST[problem] applied to STATE(node) succeeds **return** node $fringe \leftarrow Insertall(Expand(node, problem), fringe)$

A strategy is defined by picking the *order of node expansion*

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search

A* search

Romania with step costs in km

Straight-line distance to Bucharest Arad Bucharest 366 Craiova 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj Mehadia 244 241 Neamt 234 Oradea Pitesti Rimnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374

5

Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n)$ = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Properties of greedy search

 $\frac{\text{Complete}?? \text{ No--can get stuck in loops, e.g., with Oradea as goal,}}{\text{Iasi} \rightarrow \text{Neamt} \rightarrow \text{Iasi} \rightarrow \text{Neamt} \rightarrow}$

Complete in finite space with repeated-state checking

Time??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

 $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$

Complete in finite space with repeated-state checking

<u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement Space??

13

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

 $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$

Complete in finite space with repeated-state checking

<u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

 $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$

Complete in finite space with repeated-state checking

 $\underline{\text{Time}}$?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

15

\mathbf{A}^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A* search uses an *admissible* heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n.

(Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

23

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A*

 $\underline{\underline{\text{Complete}}?? \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)}\\ \underline{\underline{\text{Time}}??}$

Properties of A*

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$ <u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space??

27

Properties of A*

 $\underline{\text{Complete}} ?? \text{ Yes, unless there are infinitely many nodes with } f \leq f(G)$

 $\underline{\text{Time}}$?? Exponential in [relative error in $h \times \text{length of soln.}$]

Space?? Keeps all nodes in memory

Optimal??

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times \text{length of soln.}$]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

29

Proof of lemma: Consistency

A heuristic is *consistent* if

A heuristic is *consistent* if
$$h(n) \leq c(n,a,n') + h(n')$$

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n,a,n') + h(n')$$

$$\geq g(n) + h(n)$$

 $\geq g(n) + h(n)$

= f(n)

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

5	4	
6	1	8
7	3	2

Start State

Goal State

$$h_1(S) = ??$$

 $\overline{h_2(S)} = ??$

31

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

5	4	
6	1	8
7	3	2

Start State

Goal State

$$h_1(S) = ?? 7$$

 $h_2(S) = ?? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d = 14$$
 IDS = 3,473,941 nodes

$$A^*(h_1) = 539$$
 nodes

$$A^*(h_2) = 113 \text{ nodes}$$

$$d = 24$$
 IDS $\approx 54,000,000,000$ nodes

$$A^*(h_1) = 39,135$$
 nodes

$$A^*(h_2) = 1,641$$
 nodes

33

Relaxed problems

Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move *anywhere*, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to *any adjacent square*, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

35

Iterative improvement algorithms

In many optimization problems, *path* is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find *optimal* configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use *iterative improvement* algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

37

Example: *n***-queens**

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

39

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

In continuous spaces, problems w/ choosing step size, slow convergence

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

 $\textbf{function} \ \textbf{S} \textbf{IMULATED-ANNEALING} (\textit{problem}, \textit{schedule}) \ \textbf{returns} \ \textbf{a} \ \textbf{solution} \ \textbf{state}$

inputs: problem, a problem

schedule, a mapping from time to "temperature"

local variables: current, a node

next, a node

T, a "temperature" controlling prob. of downward steps

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T = 0 **then return** *current*

 $next \leftarrow$ a randomly selected successor of *current*

 $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$

if $\Delta E > 0$ then $current \leftarrow next$

 $\textbf{else} \ \textit{current} \leftarrow \textit{next} \ \text{only with probability} \ e^{\Delta \ E/T}$

41

Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.