Constraint Satisfaction Problemfl
Sections 3.7 and 4.4, Chapter 5 of AIMAZj

{ CSP examples
{> Backtracking search for CSPs
> Problem structure and problem decomposition

{> Local search for CSPs

.

-

Constraint satisfaction problems (CSPSI

Standard search problem:
stateis a “black box"—any old data structure
that supports goal test, eval, successor

CSP:
stateis defined byariablesX; with valuesfrom domainD;

goal testis a set oftonstraintsspecifying

Simple example of &ormal representation language

Allows usefulgeneral-purposalgorithms with more power
than standard search algorithms

allowable combinations of values for subsets of variables

~

J

/ Example: Map-Coloring I

Northern
Territory
Western Queensland
Australia
South

\ Australia

New South Wales

Victoria

VariablesW A, NT,Q, NSW,V,SA, T

DomainsD; = {red, green, blue} Tasmanid

Constraintsadjacent regions must have different colors
e.g.,.WA # NT (if the language allows this), or

K (WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), ..

'}/

4

/ Example: Map-Coloring contd. I \

- —

Tasm"a

Solutionsare assignments satisfying all constraints, e.g.,
&WA =red, NT = green,Q =red, NSW = green,V =red, SA=blue, T = green} j

5

/ Constraint graph I \

Binary CSP each constraint relates at most two variables

Constraint graphnodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure
Q) speed up search. E.g., Tasmania is an independent subproblem!j

6

/ Varieties of CSPﬂ \

Discrete variables
finite domains; sizé = O(d") complete assignments
¢ e.g., Boolean CSPs, incl. Boolean satisfiability
(NP-complete)
infinite domains (integers, strings, etc.)
¢ e.g., job scheduling, variables are start/end days for e:
job
¢ need aconstraint language.g.,
StartJob; + 5 < StartJobs
& linearconstraints solvableonlinearundecidable

Continuous variables
¢ e.g., start/end times for Hubble Telescope observations

hch

K ¢ linear constraints solvable in poly time by LP methods /

7

Varieties of constraints'

Unaryconstraints involve a single variable,
e.g.,5A # green

Binary constraints involve pairs of variables,
e.g..SA#+#WA
Higher-orderconstraints involve 3 or more variables,

e.g., cryptarithmetic column constraints

Preferencegsoft constraints), e.gred is better tharyreen
often representable by a cost for each variable assignment
— constrained optimization problems

_ /

/ Example: Cryptarithmetic I \

m|+
ol -
Clz =
|10 O

Variables F T U W RO X; X9 X3
Domains {0, 1,2,3,4,5,6,7,8,9}
Constraints

alldiff(F, T, U, W, R, O)

K O+0=R+10-X,, etc. j

/ Real-world CSPSI \

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Qotice that many real-world problems involve real-valued variabIeSJ

10

/ Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
$> Initial state the empty assignmeri,

¢ Successor functiorassign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

¢ Goal test the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depttwith n variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
@ b= (n — ¢)d at depth?, hencen!d” leaves!!!!

~

J

11

-

Backtracking search'

Variable assignments acemmutativei.e.,
[WA=redthenNT = green] same as NT =green
thenW A = red]

= b = d and there ard" leaves

Depth-first search for CSPs with single-variable assignments
is calledbacktrackingsearch

Backtracking search is the basic uninformed algorithm for CSPs

Can solven-queens fon ~ 25

.

Only need to consider assignments to a single variable at each node

~

)

12

-

Backtracking search'

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING([],csp

function RECURSIVEBACKTRACKING(assignedcsp returns solution/failure
if assigneds completethen return assigned
var < SELECT-UNASSIGNED-VARIABLE (VARIABLES[csH, assignedcsp
for eachvaluein ORDER-DOMAIN-VALUES(var, assignegcsp do
if valueis consistent witlassignedaccording to © NSTRAINTYcsH then
result«— RECURSIVEBACKTRACKING([var = value|assigned], csp
if result=£ failure then return result
end
return failure

13

Backtracking example'

14

Backtracking example'

Backtracking example'

4/‘\~

o o ¢

/\

<o

Backtracking example'

17

Improving backtracking efficiency I

General-purposenethods can give huge gains in speed:
1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

.

18

4 N

Most constrained variable.

Most constrained variable:
choose the variable with the fewest legal values

SV S SSEs oS

_ /

19

Most constraining variable'

Tie-breaker among most constrained variables

Most constraining variable:
choose the variable with the most constraints on remaining
variables

SSan® Shad Y.~

_ /

20

Least constraining vaIueI

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variabl

‘_L% Allows 1 value for SA
—47 4
_L’: _Ll: _L': < ‘_% Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

_ /

21

4 ™
Forward checking I

Idea Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S

WA NT Q NSW \% SA T

_ /

22

4 ™
Forward checking I

Idea Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSEA S5

WA NT Q NSW v SA T
(HrEErEErPEErEErE(EE(E |
1 EprEErEmrE| EEnE|

_ /

23

4 ™
Forward checking I

Idea Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSI SR S

WA NT Q NSW \% SA T
HrPEErEErEErEEPEENE(ED |
1 EErEErE[ErN| EEnE|
1 H| m EEnE| H[EDE

_ /

24

4)
Forward checking I

Idea Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

ESEA Sl Sel Se

WA NT Q NSW \% SA T
HrPEErEErEErEErEENE(E |
| — EErEmnE/EnN]| HErE
| — H| m E[mEnE] HErE
| I 1|] | — TR

_ /

25

Constraint propagation I

Forward checking propagates information from assigned to unassigne|
variables, but doesn't provide early detection for all failures:

SR SSEA S

WA NT Q NSW v SA T
I 1T I T I I i
1 EEEEEEE[EE] E[EEH]|
1 1 [m mmEE] E[EEN]|

NT andS A cannot both be blue!

Constraint propagatiorepeatedly enforces constraints locally

_ /

26

-

Arc consistencz/l

Simplest form of propagation makes each ewosistent

X — Y is consistent iff
for everyvaluex of X there issomeallowedy

SSEA SS S

WA NT Q NSW \% SA T

~<—

27

-

Arc consistencz/l

Simplest form of propagation makes each ewosistent

X — Y is consistent iff
for everyvaluex of X there issomeallowedy

SSEA SSa S

WA NT Q NSW \% SA T

[— 1 Tl 1 EEEE|

\}/

28

4 N
Arc consistencz/l

Simplest form of propagation makes each ewosistent

X — Y is consistent iff
for everyvaluex of X there issomeallowedy

SSEA SS S

WA NT Q NSW SA T

[| [m EDxrE| ®EESE]

\«

If X loses a value, neighbors &f need to be rechecked

_ /

29

/ Arc consistencﬂ \

Simplest form of propagation makes each ewosistent

X — Y is consistent iff
for everyvaluez of X there issomeallowedy

SSEA SS S

WA NT Q NSW \% SA T
(o] w [O G 1D (11

If X loses a value, neighbors &f need to be rechecked

Arc consistency detects failure earlier than forward checking

Qan be run as a preprocessor or after each assignment /

30

/ Arc consistency aIgorithmI

~

function AC-3(csp returns the CSP, possibly with reduced domains
inputs: csp a binary CSP with variable§X 1, X2, ..., X, }
local variables queuea queue of arcs, initially all the arcs asp

while queueis not emptydo
(X3, X;) < REMOVE-FIRST(queug
if REMOVE-INCONSISTENFVALUES(X;, X;)then
for each X, in NEIGHBORY X ;] do
add (X, X;)toqueue

function REMOVE-INCONSISTENFVALUES(X ;, X ;) returns true iff we remove a value
removed— false
for eachxin DOMAIN[X ;] do
if no valuey in DOMAIN[X ;] allows (xy) to satisfy the constraint betwee¥y; and X ;
then deletex from DOMAIN[X ;]; removed— true
return removed

O(n?d?), can be reduced 10 (n?d?)
Qut cannot detect all failures in poly time!

31

Problem structure.

@
@ @'4:@

©

Tasmania and mainland arelependent subproblems

Identifiable axonnected component$ constraint graph

.

Problem structure contd..

Suppose each subproblem hkasriables out of: total
Worst-case solution costis/c - d, linearin n

E.0.,n=80,d=2,c=20
280 = 4 pillion years at 10 million nodes/sec
4 - 220 = 0.4 seconds at 10 million nodes/sec

33

/ Tree-structured CSPEI \

Theorem if the constraint graph has no loops, the CSP can be solved i
O(n d?) time

Compare to general CSPs, where worst-case tirig ')

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions

Qnd the complexity of reasoning. /

34

Algorithm for tree-structured CSPs I

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

ge @2

2. Forj from n down to 2, apply
REMOVEINCONSISTENT(Parent(X;), X;)

3. Forj from 1 ton, assignX; consistently withParent(X,)

_ /

35

Nearly tree-structured CSPEI

Conditioning instantiate a variable, prune its neighbors’ domains

Do G
w‘@'éa@ - :@

@ @

Cutset conditioninginstantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset sizee = runtimeO(d° - (n — ¢)d?), very fast for smalk

)

36

Iterative algorithms for CSPSI

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operatorgeassigrvariable values

Variable selection: randomly select any conflicted variable

Value selection bynin-conflictsheuristic:
choose value that violates the fewest constraints
i.e., hillclimb with ~(n) = total number of violated constraints

- /

37

4 N
Example: 4-Queeni

States 4 queens in 4 columng{ = 256 states)

Operatorsmove queen in column
Goal test no attacks

Evaluation i(n) = number of attacks

38

/ Performance of min-conflicts' \

Given random initial state, can solwequeens in almost constant time fof
arbitraryn with high probability (e.g.n = 10,000,000)

The same appears to be true for any randomly-generated CSP
exceptin a narrow range of the ratio

number of constraints
"~ number of variables

CPU
time

A
critical
ratio

39

4 R

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined byonstraintson variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Qerative min-conflicts is usually effective in practice /

40

-~

Var'ableSQ]_, Q21 QB! Q4
DomainsD; = {1,2, 3,4}

Constraints

.

Q: # Q; (cannot be in same row)
|Q:—Q;| # |i—j| (or same diagonal)
Translate each constraint into set of allowable values for its variables

E.g., values fo(Q1, Q2) are(1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

Example: 4-Queens as a CS'

Assume one queen in each column. Which row does each one go in?

Q,=10Q,=3

~

J

41

