
'

&

$

%

Game playing

Chapter 6, Sections 1–8

1

'

&

$

%

Outline

♦ Perfect play

♦ Resource limits

♦ α–β pruning

♦ Games of chance

♦ Games of imperfect information

2

'

&

$

%

Games vs. search problems

“Unpredictable” opponent⇒ solution is astrategy
specifying a move for every possible opponent reply

Time limits⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

3

'

&

$

%

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

4

'

&

$

%

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

5

'

&

$

%

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highestminimax value

= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2

6

'

&

$

%

Minimax algorithm

function MINIMAX -DECISION(state,game) returns an action

action, state← thea, s in SUCCESSORS(state)

such that MINIMAX -VALUE(s,game) is maximized

return action

function MINIMAX -VALUE(state, game) returns a utility value

if TERMINAL -TEST(state) then

return UTILITY (state)

else if MAX is to move instatethen
return the highest MINIMAX -VALUE of SUCCESSORS(state)

else

return the lowest MINIMAX -VALUE of SUCCESSORS(state)

7

'

&

$

%

Properties of minimax

Complete??

8

'

&

$

%

Properties of minimax

Complete??Only if tree is finite (chess has specific rules for this).

Optimal??

9

'

&

$

%

Properties of minimax

Complete??Yes, if tree is finite (chess has specific rules for this)

Optimal??Yes, against an optimal opponent. Otherwise??

Time complexity??

10

'

&

$

%

Properties of minimax

Complete??Yes, if tree is finite (chess has specific rules for this)

Optimal??Yes, against an optimal opponent. Otherwise??

Time complexity??O(bm)

Space complexity??

11

'

&

$

%

Properties of minimax

Complete??Yes, if tree is finite (chess has specific rules for this)

Optimal??Yes, against an optimal opponent. Otherwise??

Time complexity??O(bm)

Space complexity??O(bm) (depth-first exploration)

For chess,b ≈ 35, m ≈ 100 for “reasonable” games

⇒ exact solution completely infeasible

12

'

&

$

%

Resource limits

Suppose we have 100 seconds, explore104 nodes/second

⇒ 106 nodes per move

Standard approach:

• cutoff test

e.g., depth limit (perhaps addquiescence search)

• evaluation function

= estimated desirability of position

13

'

&

$

%

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typicallylinear weighted sum offeatures

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g.,w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

14

'

&

$

%

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under anymonotonictransformation of EVAL

Only the order matters:

payoff in deterministic games acts as anordinal utility

function

15

'

&

$

%

Cutting off search

MINIMAX CUTOFF is identical to MINIMAX VALUE except

1. TERMINAL ? is replaced by CUTOFF?

2. UTILITY is replaced by EVAL

Does it work in practice?

bm = 106, b = 35 ⇒ m = 4

4-ply lookahead is a hopeless chess player!

4-ply≈ human novice

8-ply≈ typical PC, human master

12-ply≈ Deep Blue, Kasparov

16

'

&

$

%

α–β pruning example

MAX

3 12 8

MIN 3

3

17

'

&

$

%

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

18

'

&

$

%

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

19

'

&

$

%

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

20

'

&

$

%

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

21

'

&

$

%

Properties ofα–β

Pruningdoes notaffect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity =O(bm/2)
⇒ doublesdepth of search

⇒ can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are

relevant (a form ofmetareasoning)

22

'

&

$

%

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (toMAX) found so far off the current path

If V is worse thanα, MAX will avoid it ⇒ prune that branch

Defineβ similarly for MIN

23

'

&

$

%

The α–β algorithm

function ALPHA-BETA-SEARCH(state,game) returns an action
action, state← thea, s in SUCCESSORS[game](state)

such that MIN-VALUE(s,game,−∞,+∞) is maximized
return action

function MAX -VALUE(state,game,α,β) returns the minimax value ofstate
if CUTOFF-TEST(state) then return EVAL (state)
for eachs in SUCCESSORS(state) do

α←max(α, MIN-VALUE(s,game,α,β))
if α ≥ β then return β

return α

function MIN-VALUE(state,game,α,β) returns the minimax value ofstate
if CUTOFF-TEST(state) then return EVAL (state)
for eachs in SUCCESSORS(state) do

β←min(β, MAX -VALUE(s,game,α,β))
if β ≤ α then return α

return β

24

'

&

$

%

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect play
for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go,b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

25

'

&

$

%

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

26

'

&

$

%

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

27

'

&

$

%

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX , except we must also handle chance nodes:

. . .

if stateis a MAX nodethen
return the highest EXPECTIMINIMAX -VALUE of

SUCCESSORS(state)

if stateis a MIN nodethen
return the lowest EXPECTIMINIMAX -VALUE of

SUCCESSORS(state)

if stateis a chance nodethen
return average of EXPECTIMINIMAX -VALUE of

SUCCESSORS(state)

. . .

28

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

0.5 0.5

[− , +]

[− , +]

[− , +]

0.5 0.5

[− , +]

[− , +]

[− , +]

29

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

2

[− , 2]

0.5 0.5

[− , +]

[− , +]

[− , +]

0.5 0.5

[− , +]

[− , +]

30

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

0.5 0.5

[− , +]

[− , +]

[− , +]

0.5 0.5

[− , +]

[− , +]

2 2

[2 , 2]

31

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

[− , 2]

2

[− , 2]

0.5 0.5

[− , +]

[− , +]

[− , +]

0.5 0.5

2 2

[2 , 2]

32

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

2

0.5 0.5

[− , +]

[− , +]

[− , +]

0.5 0.5

2 2

[2 , 2]

1

[1 , 1]

[1.5 , 1.5]

33

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

[− , 0]

2

0.5 0.5

[− , +]

[− , +]

0.5 0.5

2 2

[2 , 2]

1

[1 , 1]

[1.5 , 1.5]

0

34

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

2

0.5 0.5

[− , +]

[− , +]

0.5 0.5

2 2

[2 , 2]

1

[1 , 1]

[1.5 , 1.5]

0 1

[0 , 0]

35

'

&

$

%

Pruning in nondeterministic game trees

A version ofα-β pruning is possible:

[− , 0.5]

[− , 1]

2

0.5 0.50.5 0.5

2 2

[2 , 2]

1

[1 , 1]

[1.5 , 1.5]

0 1

[0 , 0]

1

36

'

&

$

%

Pruning contd.

More pruning occurs if we can bound the leaf values

0.5 0.50.5 0.5

[−2 , 2] [−2 , 2]

[−2 , 2][−2 , 2][−2 , 2][−2 , 2]

37

'

&

$

%

Pruning contd.

More pruning occurs if we can bound the leaf values

0.5 0.50.5 0.5

[−2 , 2] [−2 , 2]

[−2 , 2][−2 , 2][−2 , 2][−2 , 2]

2

38

'

&

$

%

Pruning contd.

More pruning occurs if we can bound the leaf values

0.5 0.50.5 0.5

[−2 , 2]

[−2 , 2][−2 , 2][−2 , 2]

2 2

[2 , 2]

[0 , 2]

39

'

&

$

%

Pruning contd.

More pruning occurs if we can bound the leaf values

0.5 0.50.5 0.5

[−2 , 2]

[−2 , 2][−2 , 2][−2 , 2]

2 2

[2 , 2]

[0 , 2]

2

40

'

&

$

%

Pruning contd.

More pruning occurs if we can bound the leaf values

0.5 0.50.5 0.5

[−2 , 2]

[−2 , 2][−2 , 2]

2 2

[2 , 2]

2 1

[1 , 1]

[1.5 , 1.5]

41

'

&

$

%

Pruning contd.

More pruning occurs if we can bound the leaf values

0.5 0.50.5 0.5

[−2 , 2]

2 2

[2 , 2]

2 1

[1 , 1]

[1.5 , 1.5]

0

[−2 , 0]

[−2 , 1]

42

'

&

$

%

Nondeterministic games in practice

Dice rolls increaseb: 21 possible rolls with 2 dice

Backgammon≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 × (21 × 20)3 ≈ 1.2 × 109

As depth increases, probability of reaching a given node shrinks

⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL

≈ world-champion level

43

'

&

$

%

Digression: Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only bypositive lineartransformation of EVAL

Hence EVAL should be proportional to the expected payoff

44

'

&

$

%

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea: compute the minimax value of each action in each deal,

then choose the action with highest expected value over all

deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information

2) picking the action that wins most tricks on average

45

'

&

$

%

Example

Four-card bridge/whist/hearts hand, MAX to play first

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

46

'

&

$

%

Example

Four-card bridge/whist/hearts hand, MAX to play first

6

4

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
0

4444

6MAX

MIN

MAX

MIN

47

'

&

$

%

Example

Four-card bridge/whist/hearts hand, MAX to play first

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
0

4444

6

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7

2 9 3 2 9 3 2 3

7

3

6

4
6 6 7

3444
6

6

7

34

−0.5

−0.5

MAX

MIN

MAX

MIN

MAX

MIN

48

'

&

$

%

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;

take the right fork and you’ll be run over by a bus.

49

'

&

$

%

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;

take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you’ll be run over by a bus;

take the right fork and you’ll find a mound of jewels.

50

'

&

$

%

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;

take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you’ll be run over by a bus;

take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

guess correctly and you’ll find a mound of jewels;

guess incorrectly and you’ll be run over by a bus.

51

'

&

$

%

Proper analysis

* Intuition that the value of an action is the average of its values

in all actual states is WRONG

With partial observability, value of an action depends on the

information stateor belief statethe agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

♦ Acting to obtain information

♦ Signalling to one’s partner

♦ Acting randomly to minimize information disclosure

52

'

&

$

%

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

♦ perfection is unattainable⇒ must approximate

♦ good idea to think about what to think about

♦ uncertainty constrains the assignment of values to states

Games are to AI as grand prix racing is to automobile design

53

