Variable Elimination Example

A typical belief network with conditional probabilities is given in the following figure:

The letters B, E, A, J, and M stand for Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively. All variables (nodes) are Boolean, so the probability of, say, $\neg P(A)$ in any row of its table is $1-P(A)$. Use variable elimination method to compute probability $\mathbf{P}(\mathbf{B} \mid j, m)$.

a	$P(m \mid a)=f_{M}(a)$	a	$P(j \mid a)=f_{J}(a)$
t	0.70	t	0.90
f	0.01	f	0.05

a	b	e	$P(a \mid b, e)=f_{A}(a, b, e)$
t	t	t	0.95
t	t	f	0.94
t	f	t	0.94
t	f	f	0.94
f	t	t	0.05
f	t	f	0.06
f	f	t	0.71
f	f	f	0.999

b	e	$f_{\bar{A} J M}(b, e)$
t	t	$0.95 * 0.70 * 0.90+0.05 * 0.01 * 0.05=0.598525$
t	f	$0.94 * 0.70 * 0.90+0.06 * 0.01 * 0.05=0.59223$
f	t	$0.29 * 0.70 * 0.90+0.71 * 0.01 * 0.05=0.183055$
f	f	$0.001 * 0.70 * 0.90+0.999 * 0.01 * 0.05=0.0011295$

e	$P(e)=f_{E}(e)$	b	$f_{\bar{E} \bar{A} J M}(e)$
t	0.002	t	$0.002 * 0.598525+0.998 * 0.59223=0.59224259$
f	0.998	f	$0.002 * 0.183055+0.998 * 0.0011295=0.0014934$

b	$f_{B}(b)$
t	0.001
f	0.999

b	$f_{B}(b) \times f_{\bar{E} \bar{A} J M}(e)$
t	$0.001 * 0.59224259=0.00059224259$
f	$0.999 * 0.0014934=0.0014919066$

$\mathbf{P}(\mathbf{B} \mid j, m)=\alpha<0.00059224259,0.0014919066>\approx<0.2842,0.7158\rangle$

Problem \#24

A typical belief network with conditional probabilities is given in the following figure:

The letters C, R, S and W stand for Cloudy, Rain, Sprinkler, and Wet Grass, respectively. All variables (nodes) are Boolean, so the probability of, say, $\neg A$ in any row of its table is $1-P(A)$.
a) Assuming that the nodes are introduced in the following order Wet Grass, Sprinkler, Rain and Cloudy construct a corresponding belief network. Show which probabilities need to be specified.
b) Compute probabilities $\mathbf{P}(W)$ and $\mathbf{P}(S \mid W)$.

Problem \#24: Solution a)

Order: W, S, R, C. Probabilities $\mathbf{P}(\mathbf{W}), \mathbf{P}(\mathbf{S} \mid \mathbf{W}), \mathbf{P}(\mathbf{R} \mid \mathbf{S}, \mathbf{W})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{R}, \mathbf{S}, \mathbf{W})$
- $P(W)$

Problem \#24: Solution a)

Order: W, S, R, C. Probabilities $\mathbf{P}(\mathbf{W}), \mathbf{P}(\mathbf{S} \mid \mathbf{W}), \mathbf{P}(\mathbf{R} \mid \mathbf{S}, \mathbf{W})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{R}, \mathbf{S}, \mathbf{W})$

- $P(W)$
- $P(S \mid W)=P(S)$?

Problem \#24: Solution a)

Order: W, S, R, C. Probabilities $\mathbf{P}(\mathbf{W}), \mathbf{P}(\mathbf{S} \mid \mathbf{W}), \mathbf{P}(\mathbf{R} \mid \mathbf{S}, \mathbf{W})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{R}, \mathbf{S}, \mathbf{W})$

- $P(W)$
- $P(S \mid W)=P(S)$?
- $P(S \mid W)=P(S)$? No!

Problem \#24: Solution a)

Order: W, S, R, C. Probabilities $\mathbf{P}(\mathbf{W}), \mathbf{P}(\mathbf{S} \mid \mathbf{W}), \mathbf{P}(\mathbf{R} \mid \mathbf{S}, \mathbf{W})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{R}, \mathbf{S}, \mathbf{W})$

- $P(W)$
- $P(S \mid W)=P(S)$?
- $P(S \mid W)=P(S)$? No!
- $P(R \mid S, W)=P(R \mid S)$?

Problem \#24: Solution a)

Order: W, S, R, C. Probabilities $\mathbf{P}(\mathbf{W}), \mathbf{P}(\mathbf{S} \mid \mathbf{W}), \mathbf{P}(\mathbf{R} \mid \mathbf{S}, \mathbf{W})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{R}, \mathbf{S}, \mathbf{W})$

- $P(W)$
- $P(S \mid W)=P(S)$?
- $P(S \mid W)=P(S)$? No!
- $P(R \mid S, W)=P(R \mid S)$?
- $P(R \mid S, W)=P(R \mid S)$? No!

Problem \#24: Solution a)

Order: W, S, R, C. Probabilities $\mathbf{P}(\mathbf{W}), \mathbf{P}(\mathbf{S} \mid \mathbf{W}), \mathbf{P}(\mathbf{R} \mid \mathbf{S}, \mathbf{W})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{R}, \mathbf{S}, \mathbf{W})$

- $P(W)$
- $P(S \mid W)=P(S)$?
- $P(S \mid W)=P(S)$? No!
- $P(R \mid S, W)=P(R \mid S)$?
- $P(R \mid S, W)=P(R \mid S)$? No!
- $P(C \mid R, S, W)=P(C \mid R, S)$? $P(C \mid R, S, W)=P(C \mid R)$?
- $P(C \mid R, S, W)=P(C \mid R, S)$? Yes! $P(C \mid R, S, W)=P(C \mid R)$? No!

Problem \#24: Solution b)

$$
\begin{aligned}
& \mathbf{P}(\mathbf{W})=\sum_{c} \sum_{s} \sum_{r} \mathbf{P}(\mathbf{c}) \mathbf{P}(\mathbf{s} \mid \mathbf{c}) \mathbf{P}(\mathbf{r} \mid \mathbf{c}) \mathbf{P}(\mathbf{W} \mid \mathbf{s}, \mathbf{r}) \\
& \mathbf{P}(\mathbf{W})=\sum_{c} \mathbf{P}(\mathbf{c}) \sum_{s} \mathbf{P}(\mathbf{s} \mid \mathbf{c}) \sum_{r} \mathbf{P}(\mathbf{r} \mid \mathbf{c}) \mathbf{P}(\mathbf{W} \mid \mathbf{s}, \mathbf{r}) \\
P(w)= & P(c)\{P(s \mid c)[P(r \mid c) P(w \mid \mathbf{s}, r)+P(\neg r \mid c) P(w \mid s \neg r)]+ \\
& P(\neg s \mid c)[P(r \mid c) P(w \mid \neg s, r)+P(\neg r \mid c) P(w \mid \neg s \neg r)]\}+ \\
& P(\neg c)\{P(s \mid \neg c)[P(r \mid \neg c) P(w \mid s, r)+P(\neg r \mid \neg c) P(w \mid s \neg r)]+ \\
& P(\neg s \mid \neg c)[P(r \mid \neg c) P(w \mid \neg s, r)+P(\neg r \mid \neg c) P(w \mid \neg s \neg r)]\} \\
P(w)= & 0.5\{0.1[0.8 * 0.99+0.2 * 0.9]+0.9[0.8 * 0.9+0.2 * 0.01]\}+ \\
& 0.5\{0.5[0.2 * 0.99+0.8 * 0.9]+0.5[0.2 * 0.9+0.8 * 0.01]\} \\
P(w)= & 0.5[0.1 * 1.512+0.9 * 0.722]+0.5[0.5 * 0.918+0.5 * 0.188] \\
& 0.5 * 0.801+0.5 * 0.553=0.677 \\
P(\neg w)= & 0.323
\end{aligned}
$$

Problem \#24: Solution b)

$$
\begin{aligned}
& \mathbf{P}(\mathbf{S} \mid \mathbf{W})= \mathbf{P}(\mathbf{S}, \mathbf{W}) / \mathbf{P}(\mathbf{W})=\alpha \sum_{c} \sum_{r} \mathbf{P}(\mathbf{c}) \mathbf{P}(\mathbf{S} \mid \mathbf{c}) \mathbf{P}(\mathbf{r} \mid \mathbf{c}) \mathbf{P}(\mathbf{W} \mid \mathbf{S}, \mathbf{r}) \\
& \mathbf{P}(\mathbf{S} \mid \mathbf{W})=\alpha \sum_{c} \mathbf{P}(\mathbf{c}) \mathbf{P}(\mathbf{S} \mid \mathbf{c}) \sum_{r} \mathbf{P}(\mathbf{r} \mid \mathbf{c}) \mathbf{P}(\mathbf{W} \mid \mathbf{S}, \mathbf{r}) \\
& P(s \mid w)= \alpha\{P(c) P(s \mid c)[(P(r \mid c) P(w \mid s, r)+P(\neg r \mid c) P(w \mid s, \neg r)]+ \\
& P(\neg c) P(s \mid \neg c)[(P(r \mid \neg c) P(w \mid s, r)+P(\neg r \mid \neg c) P(w \mid s, \neg r)]\} \\
&= \alpha[0.05(0.8 * 0.99+0.18)+0.25(0.2 * 0.99+0.72)]=0.2781 \\
& P(\neg s \mid w)= \alpha[0.45(0.8 * 0.9+0.2 * 0.01)+0.25(0.2 * 0.9+0.8 * 0.01)] \\
& P(s \mid \neg w)= ? \\
& P(\neg s \mid \neg w)= ? \\
& P(s \mid w)+P(\neg s \mid w)=1, \quad P(s \mid \neg w)+P(\neg s \mid \neg w)=1,
\end{aligned}
$$

