Alpha-Beta Pruning Example

Problem \#7

A partial search tree for a two player game is given below.
a) Find the best move for the MAX player using the minimax procedure.
b) Using alpha-beta pruning show which parts of the tree do not need to be searched. Indicate where the cutoffs occur.

Problem \#7: Minimax

Problem \#7: Alpha-beta Pruning

Problem \#22

Consider the following game tree.
(a) Find the best move for the MAX player using the minimax procedure.
(b) Perform a left-to-right alpha-beta pruning on the tree. Indicate where the cutoffs occur.
(c) Perform a right-to-left alpha-beta pruning on the tree. Discuss why different pruning occurs.

Problem \#22: Minimax

Problem \#22: Alpha-beta pruning left to right

Problem \#22: Alpha-beta pruning right to left

Problem \#30: A nim-game tree

A simple version of the nim game is played as follows: Two players alternate in removing stones from three piles initially containing two, two, and three stones, respectively. The player who picks up the last stone wins. At any given turn a player can pick one or more stones from a single pile; at least one stone has to be picked every time.
a) Show, by drawing a game tree, which player can always win.
b) Is it necessary to generate the whole tree to find a winning strategy? Explain why or why not.

Problem \#30: A nim-game tree solution

b) It is possible to use previous solutions and alpha-beta pruning (if appropriate).

