
Lisp

Lisp: Question 1

Write a recursive lisp function that takes a list as an argument and returns
the number of atoms on any level of the list. For instance, list
(A B (C D E ) ()) contains six atoms (A, B, C , D, E , and NIL).

(defun count-atoms (x)
(cond ((null x) 0)

;; No more children.
((not (listp x)) 1)
;; Terminal node.
(t (+ (if (atom (first x)) 1 (count-atoms (first x)))

;; Break the problem down into two subproblems.
(count-atoms (rest x))))))

Dr. Zoran Duric () Midterm Review 1 1/ 13 September 23, 2008 1 / 13



Lisp

Question 1: count-atoms

[2]> (count-atoms ’(A B C))
3
[3]> (count-atoms ’(A B C nil))
4
[4]> (count-atoms ’(A B C (nil (A B))))
6
[5]> (count-atoms ’(A B C (nil (A B ()))))
7
[6]> (count-atoms ’(()))
1
[7]> (count-atoms ’((())))
1
[8]> (count-atoms ’((()) A B C))
4
[9]>

Dr. Zoran Duric () Midterm Review 1 2/ 13 September 23, 2008 2 / 13



Lisp

Question 2: last5

Write a lisp function last5 that takes a list A as its argument and returns a
list B consisting of the last five elements of A. You are not allowed to use
the built-in function last.
(last5 ’(A B C)) should return (A B C)
(last5 ’(A B C D E F G H)) should return (D E F G H)

(defun last5 (x)
(cond ((null (rest (rest (rest (rest (rest x)))))) x)

(t (last5 (rest x)last5))))
[3]> (last5 ’(1 2 3 ))
(1 2 3)
[4]> (last5 ’(1 2 3 4 5 6 7 8 9 10 11))
(7 8 9 10 11)
[5]> (last5 nil)
NIL

Dr. Zoran Duric () Midterm Review 1 3/ 13 September 23, 2008 3 / 13



Lisp

Question 3: flip

Write a recursive function flip that takes a binary tree as input and returns
a binary tree that it is its mirror image. You can represent binary trees as
nested structures:
Nested (recursive) representation: (<root> (<left subtree>) (<right
subtree>))

Examples:

(flip ’(1 2 3)) should return (1 3 2)
(flip ’(1 (2 3 4) ())) should return (1 () (2 4 3))
(flip ’(1 (2 (3 4 5) (10 11 12)) (6 () (7 () 8)))) should return

(1 (6 (7 8 ()) ()) (2 (10 12 11) (3 5 4)))

Dr. Zoran Duric () Midterm Review 1 4/ 13 September 23, 2008 4 / 13



Lisp

Question 3: flip

(defun flip (x)
(list (first x)

(if (atom (third x)) (third x)
(flip (third x)))

(if (atom (second x)) (second x)
(flip (second x)))))

[14]> (flip ’(1 2 3))
(1 3 2)
[15]> (flip ’(1 (2 3 4) ()))
(1 NIL (2 4 3))
[16]> (flip ’(1 (2 (3 4 5) (10 11 12)) (6 () (7 () 8))))
(1 (6 (7 8 NIL) NIL) (2 (10 12 11) (3 5 4)))
[17]>

Dr. Zoran Duric () Midterm Review 1 5/ 13 September 23, 2008 5 / 13



Lisp

Simple Lisp Functions

a) Write a lisp function funny first that takes a list of flat lists and
returns a new list composed of the first elements of the original flat
lists.

b) Write a lisp function funny last that takes a list of flat lists as its
argument and returns a new list composed of the last elements of the
original flat lists.

c) Write a lisp function funny len that takes a list of flat lists as its
argument and returns the sum of the lengths of the nested lists.

d) Write a lisp function funny sum that takes a list of flat lists of
numbers and returns the sum of the elements of the nested lists.

(funny first ’((A B) (C) (D E) (F G H))) should return (A C D F)
(funny last ’((A B) (C) (D E) (F G H))) should return (B C E H)
(funny len ’((A B) (C) (D E) (F G H))) should return 8
(funny sum ’((1 2) (3) (4 5) (10 20 30))) should return 75

Dr. Zoran Duric () Midterm Review 1 6/ 13 September 23, 2008 6 / 13



Lisp

Simple Lisp Functions: Answers

(defun funny_first (x)
(mapcar #’(lambda (y) (first y)) x))

(defun funny_last (x)
(mapcar #’(lambda (y) (first (last y))) x))

(defun funny_len (x)
(apply #’+ (mapcar #’(lambda (y) (length y)) x)))

(defun funny_sum (x)
(apply #’+ (mapcar #’(lambda (y) (apply #’+ y)) x)))

[30]> (funny_first ’((A B) (C) (D E) (F G H)))
(A C D F)
[31]> (funny_last ’((A B) (C) (D E) (F G H)))
(B C E H)
[32]> (funny_len ’((A B) (C) (D E) (F G H)))
8
[33]> (funny_sum ’((1 2) (3) (4 5) (10 20 30)))
75

Dr. Zoran Duric () Midterm Review 1 7/ 13 September 23, 2008 7 / 13



Lisp

Question: ListNonNumbers

Write a lisp function that takes a flat list as an argument and returns a list
whose elements are those elements of the original list that are not
numbers.

(defun ListNonNumbers (x)
(mapcan #’(lambda (y) (if (numberp y) nil (list y))) x))

[40]> (ListNonNumbers ’(A B C D 3 5 6))
(A B C D)
[41]> (ListNonNumbers ’(A B C D 3 5 6 (2 3 4)))
(A B C D (2 3 4))
[42]> (ListNonNumbers ’(A B C D 3 5 6 (2 3 4) nil))
(A B C D (2 3 4) NIL)
[43]> (ListNonNumbers nil)
NIL

Dr. Zoran Duric () Midterm Review 1 8/ 13 September 23, 2008 8 / 13



Lisp

Question: AddNumbers

Write a lisp function that takes a flat list as an argument and returns a
sum of the numbers in the original list. Your function should not add the
non-number elements of the original list.

(defun AddNumbers (x)
(apply #’+ (mapcar #’(lambda (y) (if (numberp y) y 0)) x)))

[45]> (AddNumbers ’(A B C D 3 5 6 (2 3 4) nil))
14
[46]> (AddNumbers ’(A B C D 3 5 6))
14
[47]> (AddNumbers ’(1 2 3 4 5 6))
21
[48]> (AddNumbers ’(A B C D nil (2 3 4)))
0

Dr. Zoran Duric () Midterm Review 1 9/ 13 September 23, 2008 9 / 13



Lisp

Question: d shuffle

Write a lisp function d shuffle that takes a list of 32 different symbols and
returns a list in which the first 16 original symbols are interleaved with the
second 16 original symbols, i.e. list (s1 s2 s3 s4 . . . s29 s30 s31 s32) becomes
(s1 s17 s2 s18 . . . s15 s31 s16 s32).

(defun d_shuffle (l)
(do ((newl nil) (i 15 (- i 1)))

((< i 0) newl)
(setf newl (cons (nth i l)

(cons (nth (+ i 16) l) newl)))))

[53]> (d_shuffle ’(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32))

(1 17 2 18 3 19 4 20 5 21 6 22 7 23 8 24 9 25 10
26 11 27 12 28 13 29 14 30 15 31 16 32)

[54]>

Dr. Zoran Duric () Midterm Review 1 10/ 13 September 23, 2008 10 / 13



Lisp

Water-Jug Puzzles

In the water-jug puzzle we are given a 4-liter jug, and a 7-liter jug.
Initially, both jugs are empty. Either jug can be filled with water from a
tap, and we can discard water from either jug down a drain. Water may be
poured from one jug into the other. There is no additional measuring
device. We want to find a set of operations that will leave precisely x liters
of water in either one of the jugs.

i. Set up a state-space search formulation of the water jug puzzle:

a) Given the initial iconic state description as a data structure.
b) Give a goal condition on states as some test on data structures.
c) Name the operators on states and give precise descriptions of what

each operator does to a state description.

ii. Find whether the goals x = {1, 2, 3, 4, 5, 6, 7} can be accomplished in
8 or fewer steps.

Hint: Use breadth-first search.

Dr. Zoran Duric () Midterm Review 1 11/ 13 September 23, 2008 11 / 13



Lisp

Water-Jug Puzzle

a) (A B) // A is the amount in the 4-liter jug
// B in the 7-liter jug

b) (A == x) or (B == x)

c) FA: (4 B),
FB: (A 7)
EA: (0 B),
EB: (A 0)

PAB: if ((A+B)<= 7) then (0 A+B)
else (A+B-7 7)

PBA: if ((A+B)<=4) then (A+B 0)
else (4 A+B-4)

Dr. Zoran Duric () Midterm Review 1 12/ 13 September 23, 2008 12 / 13



Lisp

Water-Jug Puzzle Solution

Dr. Zoran Duric () Midterm Review 1 13/ 13 September 23, 2008 13 / 13


	Lisp

