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Time varying image analysis

 Motion detection
 Computing image motion
 Motion estimation
 Egomotion and structure from motion
 Motion classification
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The problems

 Visual surveillance
– stationary camera watches a workspace – find moving objects

and alert an  operator
– moving camera navigates a workspace – find moving objects

and alert an operator
 Image coding

– use image motion to perform more efficient coding of images
 Navigation

– camera moves through the world - estimate its trajectory
» use this to remove unwanted jitter from image sequence -

image stabilization and mosaicking
» use this to control the movement of a robot through the

world
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Surveillance example: Adding an object to the scene
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Image Sequence Smoothing
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Motion detection

 Frame differencing
– subtract, on a pixel by pixel basis, consecutive frames in a

motion sequence
– high differences indicate change between the frames due to

either motion or changes in illumination
 Problems

– noise in images can give high differences where there is no
motion

» compare neighborhoods rather than points
– as objects move, their homogeneous interiors don’t result in

changing image intensities over short time periods
» motion detected only at boundaries
» requires subsequent grouping of moving pixels into objects
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Image Differencing
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Image Differencing: Results

1 frame difference 5 frame difference
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Motion detection

 Background subtraction
– create an image of the stationary background by averaging a long sequence

» for any pixel, most measurements will be from the background
» computing the median measurements, for example, at each pixel, will with

high probability assign that pixel the true background intensity - fixed
threshold on diffrencing used to find “foreground” pixels

» can also compute a distribution of background pixels by fitting a mixture
of Gaussians to set of intensities and assuming large population is the
background - adaptive thresholding to find foreground pixels

– difference a frame from the known background frame
» even for interior points of homogeneous objects, likely to detect a

difference
» this will also detect objects that are stationary but different from the

background
» typical algorithm used in surveillance systems

 Motion detection algorithms such as these only work if the
camera is stationary and objects are moving against a fixed
background
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Background Subtraction: Results

Confidence corresponds to gray-level value. 
High confidence – bright pixels, low confidence – dark pixels. 
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Background modeling: color-based

 At each pixel model colors (r,g,b) or gray-level  values
g. The following equations are used to recursively
estimate the mean and the variance at each pixel:

    where zt+1 is the current measurement. The mean µ
and the variance σ can both be time varying. The
constant α is set empirically to control the rate of
adaptation (0<α<1).

 A pixel is marked as foreground if given red value r
(or for any other measurement, say g or b) we have
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Background model

 σrcam is the variance of the camera noise, can be
estimated from image differences of any two frames.

 If we compute differences for all channels, we can set
a pixel as foreground if any of the differences is above
the preset threshold.

 Noise can be cleaned using connected component
analysis and ignoring small components.

 Similarly we can model the chromaticity values rc, gc
and use them for background subtraction:

rc=r/(r+g+b), gc=g/(r+g+b)
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Background model: edge-based

 Model edges in the image. This can be done two
different ways:
– Compute models for edges in a the average

background image
– Subtract the background (model) image and the

new frame; compute edges in the subtraction
image; mark all edges that are above a threshold.
» The threshold can be learned from examples
» The edges can be combined (color edges) or

computed separately for all three color channels
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Foreground model

 Use either color histograms (4-bit per color), texture
features, edge histograms to model the foreground

 Matching the foreground objects between frames:
tracking

 Can compare foreground regions directly: shift and
subtract. SSD or correlation: M, N are two foreground
regions. SSD = [M(i, j) ! N(i, j)]2
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A 300-Frame Sequence with a “Busy” Background

click to start movie



Time-varying image analysis- 15 Zoran Duric

Color-based moving object detection

Some Intermediate Maps Used in the Method

Edge-based moving object detection
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Combined color and edge based detection Detected human
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Results for the sequence

click to start movie
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Using histograms for background modeling

 Use histograms of small regions to model the
background:
– Color histograms computed for small regions of the

“background” image and the current (new) image (reduced
color/ 12 bit bit representation)

– Color edge histograms computed for small regions of the
“background” image and the current image (36 bin
quantization)
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Color Histograms

Reduced color representation  =
   C = (R/16) * 256 +  (G/16)*16  + (B/16)
   (This results in a 24 -> 12 bit color depth reduction)
This results in a 4096 bin histogram

− lowest 4 bits are less useful
− requires less storage
− faster implementation - easier to compare  histograms
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Color Edge Histograms

 Use edge detector to compute edges in each color band
(rx,ry,gx,gy,bx,by)

 Combine the three color bands into the structure matrix, S, to
compute the color edge response

 The edge strength is computed as the larger of the two
eigenvalues of S, and the orientation is given by the
corresponding eigenvector

 Histogram bin index is determined using edge orientation (36
bins total), and the bin count is incremented using the edge
magnitude



Time-varying image analysis- 21 Zoran Duric

Histogram Matching

 Histogram Intersection

 Chi Squared Formula

!
+

"
=

i bc

bc

bc

ihih

ihih
hh

)()(

))()((
2),(

2
2#

!

!
=

i

bc

i

bc

bc

ihih

ihih

hhI
)}(),(max{

)}(),(min{

),(



Time-varying image analysis- 22 Zoran Duric

Overall control

 Divide each frame into 40x40 pixel blocks
 To make sure that we do not miss objects on grid block

boundaries we tile the frame by overlaying two grids, one
of which is shifted by 20 pixels in x and y directions
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Criteria for block activation

 On a block by block basis, similarity measures between
background and foreground histograms are computed

 For histogram intersection: If the similarity is below a
threshold, T, then the block contains a foreground object and
is activated for display

 For chi squared: If the X2 measure is greater than a threshold,
T, then the block contains a foreground object and is activated
for display
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Examples of edge histograms

similar histograms different histograms

Similarity (inters.) = 92%
X2 = 61

Similarity (inters.) = 22%
X2 = 828
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Using edge histograms for  detection
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Moving person in a cluttered scene
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Color histogram based detection
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Edge histogram-based detection
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Surveillance: dropping an object
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Surveillance: removing an object
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Surveillance:  Interacting people
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Motion estimation - optic flow

 Optic flow is the 2-D velocity field induced in a
dynamic scene due to the projection of moving
objects onto the image plane

 Three prevalent approaches to computing optic flow:
– token matching or correlation

» extract features from each frame (grey level
windows, edge detection)

» match them from frame to frame
– gradient techniques

» relate optic flow to spatial and temporal image
derivatives

– velocity sensitive filters
» frequency domain models of motion estimation
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A 1-d gradient technique

 Suppose we have a 1-D image that changes over time due to a
translation of the image

 Suppose we also assume that the image function  is, at least over small
neighborhoods, well approximated by a linear function.
– completely characterized by its value and slope

 Can we estimate the motion of the image by comparing its spatial
derivative at a point to its temporal derivative?
– example: spatial derivative is 10 units/pixel and temporal derivative

is 20 units/frame
– then motion is (20 units/frame) / (10 units/pixel) = 2 pixels/frame

x

I(x)
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Gradient techniques

 Assume I(x,y,t) is a continuous and differentiable function of space and
time

 Suppose the brightness pattern is locally displaced by a distance dx, dy
over time period dt.
– this means that as the time varying image evolves, the image

brightnesses of points don’t change (except for digital sampling
effects) as they move in the image

– I(x,y,t) = I(x + dx, y + dy, t + dt)
 We expand I in a Taylor series about (x,y,t) to obtain

– I(x + dx, y + dy, t + dt) = I(x,y,t) + dx ∂I/∂x + dy ∂I/∂y + dt ∂I/∂t  +
(higher order terms)

 dI/dt = [I(x+dx, y+dy, t+dt) - I(x,y,t)]/dt = dx/dt ∂I/∂x +dy/dt ∂I/∂y + ∂I/
∂t = 0
– valid only if temporal change is due entirely to motion

 Can rewrite this as dI/dt = Gxu + Gyv + Gt = 0.  The G’s are derivatives
measured from the image sequence, and u and v are the unknown optic
flow components in the x and y directions, respectively
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Motion constraint line

 So, the spatial and temporal derivatives at a point in the image
only provide a linear constraint on the optic flow

Gxu + Gyv + Gt = 0

u

v
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Motion constraint line

 If Gx and Gy are small, then motion information cannot be
accurately determined

 If Gx = 0, then -Gt = Gyv, so that v is determined, but u is
unknown

 If H and L denote the gradient and level directions at a pixel then
– GH = ||∇G||
– L is perpendicular to H
– GL = 0

 Then Gt = -GHdh/dt, where nf=dh/dt is the displacement in the
gradient direction (h = ∇G/ ||∇G||)
– dh/dt can be recovered by measuring Gt  and GH. It is called

normal flow
– but dl/dt cannot be recovered, since GL = 0
– this is called the aperture problem
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Aperture problem
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Motion Flow Example: Images



Time-varying image analysis- 39 Zoran Duric

Motion Flow Example: Normal Flow
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Recovering u and v

 Compute for normal flow in a small image neighborhood
– nf = -Gt/||∇G||

 Solve system of linear equations corresponding to motion
constraints in the small neighborhood
– assume u and v will not vary in that small neighborhood
– requires that neighborhoods have edges with different

orientations, since slope of motion constraint line is
determined by image gradient

v

u
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Recovering u and v

 If the constraint lines in a neighborhood are nearly
parallel (i.e., the gradient directions are all similar),
then the location of the best fitting (u,v) will be very
sensitive to errors in estimating gradient directions.

 More generally, one could fit a parametric form to
local neighborhoods of constraint lines, finding
parameters that bring constraint lines “nearest” to
the estimated motion assigned to each pixel.
– for example, if we assume that the surface we are

viewing in any small image neighborhood is well
approximated by a plane, then the optical flow will
be a quadratic function of image position in that
image neighborhood
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A regularization approach

 Many vision problems such as stereo reconstruction of visible
surfaces and recovery of optic flow are instances of ill posed
problems.

 A problem is well posed when its solution:
– exists
– is unique, and
– depends continuously on its initial data

 Any problem that is not well posed is said to be ill posed
 The optic flow problem is to recover both degrees of freedom of

motion at each image pixel, given the spatial and temporal derivatives
of the image sequence
– but any solution chosen at each pixel that locally satisfies the

motion constraint equation can be used to construct an optic flow
field consistent with the derivatives measured

– therefore, the solution is not unique - how to choose one?
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Parametric models

 (δx,δy) are flow components – optical flow
 This is a quadratic 8 parameter model (moving plane?)
 We can assume simpler models:

– Constant flow: w2=w3=w5=w6=w7=w8=0
– Rotation, translation, and shear: w2=w6=w7=s8=0
– Divergence, scaling, and translation: w3=w5=w7=s8=0
– Linear affine: w7=s8=0
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Estimating parametric flow from normal flow

 At each point we measure the normal flow nf, and
the gradient direction (nx,ny). We can write for
linear affine (6 param.) model:
– nf ≈ δxnx+δyny= w2nxx + w3nxy + w1nx + w5nyx +

w6nxy + w4ny =w·p
– p = (nx nxx  nxy ny nyx  nyy)T, and
– w =(w1 w2 w3 ww4 w5 w6)T is the vector of affine

parameters
 Computer normal flow at many  points and have an

overdetermined system of linear equations:
– Pw ≈ b, where P is a matrix whose elements are

pi computed at points (xi,yi).
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Estimating parametric flow (cont.)

– b is the vector of normal flow values nf,i
measured at points (xi,yi)

 Solve Pw ≈ b using Linear Least Squares method
– w=(PTP)–1PTb
– in Matlab write w = P \ b;
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A regularization approach

 Solution - add a priori knowledge that can choose between the
solutions

 Formally, suppose we have an ill posed problem of determining z
from data y expressed as
– Az = y, where A is a linear operator (e.g., projection

operation in image formation)
 We must choose a quadratic norm  || || and a so-called stabilizing

functional ||Pz|| and then find the z that minimizes:
– ||Az-y||2 + λ ||Pz||2
–  λ controls the compromise between the degree of

regularization and the closeness of the solution to the input
data (the first term).

 T. Poggio, V. Torre and C. Koch, Computational vision and
regularization theory, Nature, 317, 1984.
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A regularization approach

 For optic flow:
– the first term is [dx/dt ∂I/∂x +dy/dt ∂I/∂y + ∂I/∂t]2 =

[dI/dt]2

» this should, ideally, be zero according to the
theory

– the second term enforces a smoothness constraint
on the optic flow field:
ε = (∂u/∂x)2 + (∂v/∂x)2 + (∂u/∂y)2 + (∂v/∂y)2

– The regularization problem is then to find a flow
field that minimizes

[dI/dt] 2 + λ ε
– This minimization can be done over the entire image

using various iterative techniques
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Token and correlation methods

 Gradient based methods only work when the motion is “small” so
that the derivatives can be reliably computed
– although for “large” motions, one can employ multiresolution

methods
 Tracking algorithms can compute motion when the motion is

“large”
– correlation
– feature tracking

 Correlation
– choose a kxk window surrounding a pixel, p,  in frame i.
– compare this window against windows in similar positions in frame

i+1
– The window of best match determines the displacement of p from

frame i to frame i+1
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Correlation

 Correlation
– sum of squared gray level differences
– sum of absolute intensity differences
– “robust” versions of these sensitive to outliers

 Drawbacks of correlation
– matching in the presence of rotation is computationally

expensive since all orientations of the window must be
matched in frame i+1

– if motion is not constant in the kxk window then the window
will be distorted by the motion, so simple correlation
methods will fail

» this suggests using smaller windows, within which motion
will not vary significantly

» but smaller windows have less specificity, leading to
matches more sensitive to noise
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Tracking

 Apply a feature detector, such as an edge detector, to
each frame of the sequence
– want features to be distinctive
– example: patterns of edges or gray levels that are

dissimilar to their surrounds (image has a locally
small autocorrelation)

 Match these features from frame to frame
– might assume that nearby features move similarly to

help disambiguate matches (but this is not true at
motion boundaries)

– integrate the matching with assumptions about
scene structure - e.g., features are all on a plane
moving rigidly
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Motion estimation – token matching

 Extract features from each frame (grey level
windows, edge detection)

– λ1 ≥  λ2 ≥ 0 are eigenvalues of M
– If λ1  = λ2 = 0, mean squared magnitude of the

gradient is 0 (flat, unchanging area in the image)
– If λ1 > λ2 = 0, values do not change in the

direction of the corresponding eigenvector (edge)
– If λ1 > 0 and λ2 > 0, gray values change in multiple

directions (corner)
» λ2 > τ, where τ  is some threshold
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Motion estimation – token matching

 Match them from frame to frame. Detect tokens in the
next frame using lower threshold. Why?
– Minimize SSD (sum of squared differences) over a

neighborhood in the new image. M is a small area
around the token (5x5,7x7,11x11)

– Maximize the correlation over a neighborhood in the
new image

SSD = [M(i, j) ! N(i, j)]2
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Multiresolution methods

 Consider using edges as features for a tracking
algorithm for motion estimation.  What should the
scale of the edge detector be?
– small scale

» many edges are detected
» easily confused with one another
» computationally costly matching problem

– coarse scale
» relatively few edges identified
» localized only poorly, so motion estimates have high errors
» simple matching problem
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Multiresolution methods

 Multiresolution - process the image over a range
of scales, using the results at coarser scales to
guide the analysis at finer scales
– detect edges at a coarse scale
– estimate motion by tracking
– use these estimates as initial conditions for

matching edges at next finest scale
 These are also called focusing methods or scale

space methods
– can also apply to gradient based motion

estimators
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3-D motion and optical flow

 Assume a camera moving in a static environment
 A rigid body motion of the camera can be expressed as a

translation and a rotation about an axis through the origin.
 Let

– t  be the translational component of the camera motion
–  ω be the angular velocity
– r be the column vector [X Y Z] T

 Then the velocity of r with respect to the XYZ coordinate system
is
V = -t + ω x r

 Let the components of
–  t  = [U V W]T

–  w = [A B C]T
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3-D Motion and Optic Flow

 Rewrite in component form:
X’ = -U - BZ + CY
Y’ = -V - CX + AZ
Z’ = -W - AY + BX
where the differentiation is with respect to time

 The optic flow at a point (x,y) is (u,v) where
u = x’, x = fX/Z
v = y’, y = fY/Z

 Differentiating x and y with respect to time, we obtain
u = X’/Z - XZ’/Z2 = (-U/Z - B + Cy) - x(-W/Z - Ay + Bx)
v = Y’/Z - YZ’/Z2 = (-V/Z - Cx + A) - y(-W/Z - Ay + Bx)
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3-D Motion and Optic Flow

 These can be written in the form
u = ut + ur
v = vt + vr

 (ut ,vt ) denotes the translational component of the optic flow
 (ur ,vr ) denotes the rotational component of the optic flow

ut = [-U + xW]/Z
vt = [-V + yW]/Z
ur = Axy - B(x2 +1) + Cy
vr = A(y2 + 1) - Bxy - Cx

 Notice that the rotational part is independent of Z  - it just
depends on the image location of a point

 So, all information about the structure of the scene is revealed
through the translational component
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Special case of a plane in motion

 Suppose we are looking at a plane while the camera moves
– Z = Z0 + pX + qY

 Then for any point on this plane
– Z - pX - qY = Z0
– 1 - p(X/Z) - p(Y/Z) = Z0/Z
– 1/Z = [1-pX/Z - qY/Z]/Z0 = [1- px - qy]/Z0

 So, we can rewrite the translational components of motion for a
plane as:
ut = [-U + xW][1- px - qy]/Z0 = [-U/Z0 + xW/Z0] [1- px - qy]
vt = [-V +yW][1- px - qy]/Z0 = [-V/Z0 + xW/Z0] [1- px - qy]

 These are quadratic equations in x and y
 So, if we can compute the translational component of the optic

flow at “enough” points from a planar surface, then we can
recover the translational motion (with unknown scaling) and the
orientation of the plane being viewed.
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Pure translation

 When camera motion is only translation, then we have
ut= [-U + xW]/Z
vt= [-V + yW]/Z

 Consider the special point (u,v) = (U/W, V/W).
– This is the “image” of the velocity vector onto the image

plane
– The motion at this point must be 0 since the surface point

along this ray stays on the ray as the camera moves (also
our equations evaluate to 0 at (U/W, V/W))

 Consider the line connecting any other (x,y) to (x + ut, y + vt)
– The slope of this line is vt/ut = [x-u]/[y-v]
– So, the line must pass through (u, v)

 All of the optic flow vectors are concurrent, and pass through
the special point (u,v) which is called the  focus of expansion
(contraction)
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Pure translation

 Another way to look at it
– Let Δt = 1, so that the image center at time t moves from

(0,0,0) to (U,V,W) at time t+1
– Think of the two images as a stereo pair
– The location  of the projection of  (U,V,W), the lens center at

time t+1 (the “right” image), in the image at time t (the left
image) is at location (U/W, V/W) = (u,v)

– All conjugate lines at time t must pass through this point
– So, given a point (x,y) at time t, the location of its

corresponding point at time t+1 in the original coordinate
system must line on the line connecting (x,y) to (u,v)

 So, if we know the optic flow at two points in the case of pure
translation, we can find the focus of expansion
– in practice want more than two points
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Pure translation

 Can we recover the third component of motion, W?
 No, because the same optic flow field can be generated by two

similar surfaces undergoing similar motions (U,V and W always
occur in ratio with Z).
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Normal flows and camera motion estimation

 If we can compute optic flow at a point, then the foe is
constrained to lie on the extension of the optic flow vector

 But the aperture problem makes it difficult to compute optic
flow without making assumptions of smoothness or surface order

 Normal flow (the component of flow in the gradient direction)
can be locally computed at a pixel without such assumptions

 Can we recover camera motion from normal flow?
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Identifying the FOE from normal flow

 Assume that the foe is within the field of view of the camera
 For each point, p,  in the image

For each normal flow vector, n,
If p lies in the “correct” halfplane of n, then score a vote for
p

    The FOE is the centroid of the connected component of highest
scoring points (might be a single pixel, but ordinarily will not be).

 Alternative code - maintain an array of counters in register with
the image
For each normal flow vector,n,

Increment the counters corresponding to all pixels in the
“correct” halfplane of n

Search the array of counters for the connected component of
highest vote count

 For an image containing N normal flow vectors and mxm pixels,
both algorithms are (m2N), but (2) is more efficient
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Identifying the FOE from normal flow

 What if the FOE is outside the field of view of the camera?
 The image plane is a bad place to represent the FOE to begin

with
– FOE indicates the direction of translational motion
– Pixels in a perspective projection image do not correspond to

equal angular samples of directions
» in the periphery, a pixel corresponds to a wide range of directions

– Solution - represent the array of accumulators as a sphere,
with an equiangular sampling of the surface of the sphere

» Each normal vector will then cast votes for all samples in a hemisphere
» Simple mathematical relationship between the spherical coordinate system

of the array of counters, and the image coordinate system


