Time varying image analysis
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m Motion detection

m Computing image motion

m Motion estimation

m Egomotion and structure from motion
m Motion classification

Time-varying image analysis- 1 Zoran Duric



The problems
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m Visual surveillance

- stationary camera watches a workspace - find moving objects
and alert an operator

- moving camera navigates a workspace - find moving objects
and alert an operator

m |Image coding

- use image motion to perform more efficient coding of images
m Navigation

- camera moves through the world - estimate its trajectory

» use this to remove unwanted jitter from image sequence -
iImage stabilization and mosaicking

» use this to control the movement of a robot through the
world
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Surveillance example: Adding an object to the scene
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Image Sequence Smoothing
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Motion detection
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m Frame differencing

— subtract, on a pixel by pixel basis, consecutive frames in a
motion sequence

- high differences indicate change between the frames due to
either motion or changes in illumination
m Problems

- noise in images can give high differences where there is no
motion

» compare neighborhoods rather than points

- as objects move, their homogeneous interiors don’t result in
changing image intensities over short time periods

» motion detected only at boundaries
» requires subsequent grouping of moving pixels into objects
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Image Differencing: Results
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1 frame difference 5 frame difference
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Motion detection
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m Background subtraction
— create an image of the stationary background by averaging a long sequence
» for any pixel, most measurements will be from the background

» computing the median measurements, for example, at each pixel, will with
high probability assign that pixel the true background intensity - fixed
threshold on diffrencing used to find “foreground” pixels

» can also compute a distribution of background pixels by fitting a mixture
of Gaussians to set of intensities and assuming large population is the
background - adaptive thresholding to find foreground pixels

- difference a frame from the known background frame

» even for interior points of homogeneous objects, likely to detect a
difference

» this will also detect objects that are stationary but different from the
background

» typical algorithm used in surveillance systems

m Motion detection algorithms such as these only work if the
camera is stationary and objects are moving against a fixed
background
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Background Subtraction: Results
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Confidence corresponds to gray-level value.
High confidence — bright pixels, low confidence — dark pixels.
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Background modeling: color-based
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m At each pixel model colors (r,g,b) or gray-level values
g. The following equations are used to recursively
estimate the mean and the variance at each pixel:

U, ., =ou, + (1 - a)Zt+l
2

O, = a(Otz + (tut+1 — Mt)z) + (1 — a)(Zt+1 — Aut+1)2

where z,,,is the current measurement. The mean u
and the variance o can both be time varying. The
constant a is set empirically to control the rate of
adaptation (O<o<1).

m A pixel is marked as foreground if given red value r
(or for any other measurement, say g or b) we have
|7 —u, |>3max(o,,o0

recam
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Background model
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® o, IS the variance of the camera noise, can be
estimated from image differences of any two frames.

m If we compute differences for all channels, we can set
a pixel as foreground if any of the differences is above
the preset threshold.

m Noise can be cleaned using connected component
analysis and ignoring small components.

m Similarly we can model the chromaticity values rc, gc
and use them for background subtraction:

r.=r/(r+g+b), g.=9/(r+g+b)
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Background model: edge-based
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m Model edges in the image. This can be done two
different ways:

- Compute models for edges in a the average
background image

— Subtract the background (model) image and the
new frame; compute edges in the subtraction
iImage; mark all edges that are above a threshold.

» The threshold can be learned from examples

» The edges can be combined (color edges) or
computed separately for all three color channels
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Foreground model
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m Use either color histograms (4-bit per color), texture
features, edge histograms to model the foreground

m Matching the foreground objects between frames:
tracking

m Can compare foreground regions directly: shift and
subtract. SSD or correlation: M, N are two foreground

regions.  ssp - EE[M(Z )= NG DF
i=1j=1

33 MG )NG.j)

C— ll]l

3 S MG SING

i=1 j=1 i=1 j=1
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A 300-Frame Sequence with a “Busy” Background
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click to start movie
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Some Intermediate Maps Used in the Method
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Color-based moving object detection Edge-based moving object detection
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Detected human

Combined color and edge based detection
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Results for the sequence

click to start movie
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Using histograms for background modeling
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m Use histograms of small regions to model the
background:

— Color histograms computed for small regions of the
“pbackground” 1image and the current (new) image (reduced
color/ 12 bit bit representation)

— Color edge histograms computed for small regions of the
“background” 1image and the current image (36 bin
quantization)
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Color Histograms
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Reduced color representation =
C=(R/16) * 256 + (G/16)*16 + (B/16)
(This results 1n a 24 -> 12 bit color depth reduction)
This results in a 4096 bin histogram
— lowest 4 bits are less useful
— requires less storage

— faster implementation - easier to compare histograms
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Color Edge Histograms
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m Use edge detector to compute edges 1n each color band
(780800,

B Combine the three color bands into the structure matrix, S, to
compute the color edge response

B The edge strength 1s computed as the larger of the two
eigenvalues of S, and the orientation is given by the
corresponding eigenvector

B Histogram bin index 1s determined using edge orientation (36
bins total), and the bin count 1s incremented using the edge
magnitude
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Histogram Matching
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B Histogram Intersection

Emin{hc (1), h,(0)}

(e hy) = Eimax{hc (i), h, (i)}

B Chi Squared Formula
h, (i) — h, (7))’
Xz(hc,hb)=22( c() b( ))

h.(i)+ hy, (i)
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Overall control
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B Divide each frame into 40x40 pixel blocks

B To make sure that we do not miss objects on grid block
boundaries we tile the frame by overlaying two grids, one
of which 1s shifted by 20 pixels in x and y directions
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Criteria for block activation
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B On a block by block basis, similarity measures between
background and foreground histograms are computed

B For histogram intersection: If the similarity 1s below a
threshold, T, then the block contains a foreground object and
1s activated for display

B For chi squared: If the X° measure is greater than a threshold,
T, then the block contains a foreground object and is activated
for display
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Examples of edge histograms
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similar histograms different histograms

Similarity (inters.) = 92% Similarity (inters.) = 22%
X’=61 X’=828
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Using edge histograms for detection
| I I J [ [=(eisiul
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Moving person in a cluttered scene
| 1 ¥ 1 I | I/
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Color histogram based detection
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Edge histogram-based detection
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Surveillance: dropping an object
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Surveillance: removing an object
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Surveillance: Interacting people
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Motion estimation - optic flow
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m Optic flow is the 2-D velocity field induced in a
dynamic scene due to the projection of moving
objects onto the image plane

m Three prevalent approaches to computing optic flow:
- token matching or correlation

» extract features from each frame (grey level
windows, edge detection)

» match them from frame to frame
- gradient techniques

» relate optic flow to spatial and temporal image
derivatives

— velocity sensitive filters
» frequency domain models of motion estimation
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A 1-d gradient technique
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m Suppose we have a 1-D image that changes over time due to a

translation of the image

m Suppose we also assume that the image function is, at least over small
neighborhoods, well approximated by a linear function.

- completely characterized by

its value and slope

m Can we estimate the motion of the image by comparing its spatial
derivative at a point to its temporal derivative?

- example: spatial derivative is 10 units/pixel and temporal derivative

is 20 units/frame
- then motion is (20 units/fra

me) / (10 units/pixel) = 2 pixels/frame

[(X)

N\
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Gradient techniques
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m Assume I(x,y,t) is a continuous and differentiable function of space and
time

m Suppose the brightness pattern is locally displaced by a distance dx, dy
over time period dt.

— this means that as the time varying image evolves, the image
brightnesses of points don’t change (except for digital sampling
effects) as they move in the image

- I(x,y,t) =I(x + dx, y + dy, t + dt)
m We expand | in a Taylor series about (x,y,t) to obtain

- I(x +dx, y + dy, t + dt) = I(x,y,t) + dx al/ox + dy al/ay + dt al/at +
(higher order terms)

m dl/dt = [I(x+dx, y+dy, t+dt) - I(x,y,t)]/dt = dx/dt al/ox +dy/dt al/ay + ol/
ot =0

— valid only if temporal change is due entirely to motion

m Can rewrite this as dI/dt = G,u + G,v + G, = 0. The G’s are derivatives
measured from the image sequence and u and v are the unknown optic
flow components in the x and y directions, respectively
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Motion constraint line
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Gu+GyVv+G =0

m So, the spatial and temporal derivatives at a point in the image
only provide a linear constraint on the optic flow
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Motion constraint line
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m If G, and G, are small, then motion information cannot be
accurately determined

m If G, =0, then -G, = Gyv, so that v is determined, but u is
unknown

m If H and L denote the gradient and level directions at a pixel then
- G, = VGl
- L is perpendicular to H
- G =0
m Then G, = -G,dh/dt, where n;=dh/dt is the displacement in the
gradient direction (h = VG/ lIVGIl)

- dh/dt can be recovered by measuring G, and G,,. It is called
normal flow

- but dl/dt cannot be recovered, since G, = 0
— this is called the aperture problem
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Aperture problem
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Motion Flow Example: Images
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Motion Flow Example: Normal Flow

1 1 J § | [°[| [N

. '/;_Z,r

W

A

mﬁ\
W

-

A
!
L
MRS

M

M;\VN\“ M
{lii

A
z

" A,

7,
B 4
%
1

%

=

et hein

v
mnn}ﬁi’,f‘i”f”ﬂ‘wm\m th

Time-varying image analysis- 39

Zoran Duric



Recovering u and v
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m Compute for normal flow in a small image neighborhood
- n; = -G/IIVGlII
m Solve system of linear equations corresponding to motion
constraints in the small neighborhood
— assume u and v will not vary in that small neighborhood

- requires that neighborhoods have edges with different
orientations, since slope of motion constraint line is
determined by image gradient

>
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Recovering u and v
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m If the constraint lines in a neighborhood are nearly
parallel (i.e., the gradient directions are all similar),
then the location of the best fitting (u,v) will be very
sensitive to errors in estimating gradient directions.

m More generally, one could fit a parametric form to
local neighborhoods of constraint lines, finding
parameters that bring constraint lines “nearest” to
the estimated motion assigned to each pixel.

- for example, if we assume that the surface we are
viewing in any small image neighborhood is well
approximated by a plane, then the optical flow will
be a quadratic function of image position in that
image neighborhood

Time-varying image analysis- 41 Zoran Duric



A regularization approach
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m Many vision problems such as stereo reconstruction of visible
surfaces and recovery of optic flow are instances of ill posed
problems.

m A problem is well posed when its solution:
- exists
- 1S unique, and
— depends continuously on its initial data
m Any problem that is not well posed is said to be ill posed

m The optic flow problem is to recover both degrees of freedom of
motion at each image pixel, given the spatial and temporal derivatives
of the image sequence

- but any solution chosen at each pixel that locally satisfies the
motion constraint equation can be used to construct an optic flow
field consistent with the derivatives measured

- therefore, the solution is not unique - how to choose one?
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Parametric models
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ox] [wl]l [w2 w3][x] [x* xp][w7

|
+
+

ov| |wa| [wS wol|ly| |xy y°||w8

m (dx,0y) are flow components - optical flow
m This is a quadratic 8 parameter model (moving plane?)
m We can assume simpler models:
— Constant flow: w2=w3=w5=wb6=w7=w8=0
- Rotation, translation, and shear: w2=wé6=w7=s8=0
- Divergence, scaling, and translation: w3=w5=w/=s8=0
— Linear affine: w/7=s8=0
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Estimating parametric flow from normal flow
| 7§ J I I°0 [nj

m At each point we measure the normal flow ns and
the gradient direction (n,,n,). We can write for
linear affine (6 param.) model:
= Ng = oxn,+oyn,= w2nx + winy + win_+ winx +
woény + win, =W-p

- p=(m.nx nyn nx ny),and

— w=(wl w2 w3 ww4 w5 w6)! is the vector of affine
parameters

m Computer normal flow at many points and have an
overdetermined system of linear equations:

- Pw = b, where P is a matrix whose elements are
p; computed at points (x,V,).
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Estimating parametric flow (cont.)
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- b is the vector of normal flow values oy
measured at points (x,Yy,)

m Solve Pw = b using Linear Least Squares method
- w=(PTP)-"PTb
— in Matl/ab write w = P \ b;
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A regularization approach
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Solution - add a priori knowledge that can choose between the
solutions

Formally, suppose we have an ill posed problem of determining z
from data y expressed as

- Az =y, where A is a linear operator (e.g., projection
operation in image formation)

We must choose a quadratic norm |l || and a so-called stabilizing
functional IIPzll and then find the z that minimizes:

- llAz-yll2 + A 1IPz]I?

— A controls the compromise between the degree of
regularization and the closeness of the solution to the input
data (the first term).

T. Poggio, V. Torre and C. Koch, Computational vision and
regularization theory, Nature, 317, 1984.

Time-varying image analysis- 46 Zoran Duric



A regularization approach
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m For optic flow:

- the first term is [dx/dt dl/ox +dy/dt al/ay + ol/at]? =
[dl/dt]?

» this should, ideally, be zero according to the
theory

- the second term enforces a smoothness constraint
on the optic flow field:

e = (0u/0x)2 + (av/9x)2 + (0u/ay)? + (9v/ay)?

- The regularization problem is then to find a flow
field that minimizes

[dI/dt] 2 + L e

— This minimization can be done over the entire image
using various iterative techniques
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Token and correlation methods

1 1 J § | [°[| [N

m Gradient based methods only work when the motion is “small” so
that the derivatives can be reliably computed

— although for “large” motions, one can employ multiresolution
methods

m Tracking algorithms can compute motion when the motion is
“large”
- correlation
- feature tracking
m Correlation
— choose a kxk window surrounding a pixel, p, in frame i.
— compare this window against windows in similar positions in frame
I+ 1
— The window of best match determines the displacement of p from
frame i to frame i+1

Time-varying image analysis- 48 Zoran Duric



Correlation
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m Correlation
- sum of squared gray level differences
- sum of absolute intensity differences
- “robust” versions of these sensitive to outliers

m Drawbacks of correlation

- matching in the presence of rotation is computationally
expensive since all orientations of the window must be
matched in frame i+1

— If motion is not constant in the kxk window then the window
will be distorted by the motion, so simple correlation
methods will fail

» this suggests using smaller windows, within which motion
will not vary significantly

» but smaller windows have less specificity, leading to
matches more sensitive to noise
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Tracking
| 7§ J I I°0 [nj

m Apply a feature detector, such as an edge detector, to
each frame of the sequence

- want features to be distinctive

- example: patterns of edges or gray levels that are
dissimilar to their surrounds (image has a locally
small autocorrelation)

m Match these features from frame to frame

- might assume that nearby features move similarly to
help disambiguate matches (but this is not true at
motion boundaries)

- integrate the matching with assumptions about
scene structure - e.g., features are all on a plane
moving rigidly
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Motion estimation — token matching
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m Extract features from each frame (grey level
windows, edge detection)

SE} SEE,
2
SEE, 3E;

E and E arex andy
components of image gradient

- M = A, = 0 are eigenvalues of M

- If A, = A, =0, mean squared magnitude of the
gradient is O (flat, unchanging area in the image)

- If A, > A\, = 0O, values do not change in the
direction of the corresponding eigenvector (edge)

- If A, > 0 and A, > O, gray values change in multiple
directions (corner)

» A, > 1, Where 7 is some threshold
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Motion estimation — token matching
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m Match them from frame to frame. Detect tokens in the
next frame using lower threshold. Why?

— Minimize SSD (sum of squared differences) over a
neighborhood in the new image. M is a small area
around the token (5x5,7x7,11x11)

ssD=" S [M(,j)- NG, )T

i=1j=1

- Maximize the correlation over a neighborhood in the
new image > M. )HNG.j)

11]1

[2 M@, j) EEN(Z 1

i=1 j=1 i=1 j=1
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Multiresolution methods
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m Consider using edges as features for a tracking
algorithm for motion estimation. What should the
scale of the edge detector be?

- small scale
» many edges are detected
» easily confused with one another
» computationally costly matching problem
— coarse scale
» relatively few edges identified
» localized only poorly, so motion estimates have high errors
» simple matching problem
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Multiresolution methods
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m Multiresolution - process the image over a range
of scales, using the results at coarser scales to
guide the analysis at finer scales

- detect edges at a coarse scale
- estimate motion by tracking

- use these estimates as initial conditions for
matching edges at next finest scale

m These are also called focusing methods or scale
space methods

— can also apply to gradient based motion
estimators
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3-D motion and optical flow
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m Assume a camera moving in a static environment

m A rigid body motion of the camera can be expressed as a
translation and a rotation about an axis through the origin.

m Let
- t be the translational component of the camera motion
— be the angular velocity
- r be the column vector [XY Z] T

m Then the velocity of r with respect to the XYZ coordinate system
IS

V=-t+wXxr

m Let the components of
- t=[UVW]T
- w=[ABC]T
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3-D Motion and Optic Flow
| B 1 I @[ s

m Rewrite in component form:
X =-U-BZ+CY
Y =-V-CX+ AZ
' =-W - AY + BX
where the differentiation is with respect to time
m The optic flow at a point (x,y) is (u,v) where
u=x’, x = fX/Z
v=y,y=fY/Z
m Differentiating x and y with respect to time, we obtain
u=X/2-X2'/22 = (-U/Z -B + Cy) - x(-W/Z - Ay + Bx)
v=Y/Z-Y72/7%=(-V/Z-Cx+ A) -y(-W/Z - Ay + Bx)
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3-D Motion and Optic Flow
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These can be written in the form
u=u,+ U
V=V, +V,
(u,,v, ) denotes the translational component of the optic flow
(u,,v, ) denotes the rotational component of the optic flow
u, = [-U + xW]/Z
v, = [-V + yW]/Z
u = Axy - B(x2 +1) + Cy
v, =A(y? + 1) - Bxy - Cx
Notice that the rotational part is independent of Z - it just
depends on the image location of a point

So, all information about the structure of the scene is revealed
through the translational component
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Special case of a plane 1n motion
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Suppose we are looking at a plane while the camera moves
- L=~Ly+pX+QqY
Then for any point on this plane
- Z-pX-qY =7,
- 1 -p(X/2) -p(Y/2) =2,/2
- 1/Z=[1-pX/Z-qY/Z]/Z,=[1-px - qyl/Z,
So, we can rewrite the translational components of motion for a
plane as:
u, = [-U + xW][1- px - qyl/Z, = [-U/Z, + xXW/Z,] [1- px - qy]
Ve = [-V +yW][1-px - qyl/Z,=[-V/Zy + xXW/Z,] [1- px - qy]
These are quadratic equations in x and y

So, if we can compute the translational component of the optic
flow at “enough” points from a planar surface, then we can
recover the translational motion (with unknown scaling) and the
orientation of the plane being viewed.
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Pure translation
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When camera motion is only translation, then we have
u=[-U+ xW]/Z
vi=[-V + yW]/Z

Consider the special point (u,v) = (U/W, V/W).

- This is the “image” of the velocity vector onto the image
plane

— The motion at this point must be O since the surface point
along this ray stays on the ray as the camera moves (also
our equations evaluate to 0 at (U/W, V/W))

Consider the line connecting any other (x,y) to (x + u,, y + v,)
- The slope of this line is v./u, = [x-u]/[y-V]
- So, the line must pass through (u, v)

All of the optic flow vectors are concurrent, and pass through
the special point (u,v) which is called the focus of expansion
(contraction)
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Pure translation
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m Another way to look at it

Let At = 1, so that the image center at time t moves from
(0,0,0) to (U,V,W) at time t+1

Think of the two images as a stereo pair

The location of the projection of (U,V,W), the lens center at
time t+1 (the “right” image), in the image at time t (the left
image) is at location (U/W, V/W) = (u,v)

All conjugate lines at time t must pass through this point

So, given a point (x,y) at time t, the location of its
corresponding point at time t+1 in the original coordinate
system must line on the line connecting (x,y) to (u,v)

m So, if we know the optic flow at two points in the case of pure
translation, we can find the focus of expansion

in practice want more than two points
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Pure translation
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m Can we recover the third component of motion, W?

m No, because the same optic flow field can be generated by two
similar surfaces undergoing similar motions (U,V and W always
occur in ratio with 2).
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Normal flows and camera motion estimation

1 1 J § | [°[| [N

m If we can compute optic flow at a point, then the foe is
constrained to lie on the extension of the optic flow vector

m But the aperture problem makes it difficult to compute optic
flow without making assumptions of smoothness or surface order

m Normal flow (the component of flow in the gradient direction)
can be locally computed at a pixel without such assumptions

m Can we recover camera motion from normal flow?

\
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Identifying the FOE from normal flow
| 7§ J I I°0 [nj

m Assume that the foe is within the field of view of the camera
m For each point, p, in the image
For each normal flow vector, n,

If p lies in the “correct” halfplane of n, then score a vote for

P
The FOE is the centroid of the connected component of highest
scoring points (might be a single pixel, but ordinarily will not be).

m Alternative code - maintain an array of counters in register with
the image

For each normal flow vector,n,

Increment the counters corresponding to all pixels in the
“correct” halfplane of n

Search the array of counters for the connected component of
highest vote count

m For an image containing N normal flow vectors and mxm pixels,
both algorithms are (m2N), but (2) is more efficient
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Identifying the FOE from normal flow
| 7§ J I I°0 [nj

m What if the FOE is outside the field of view of the camera?

m The image plane is a bad place to represent the FOE to begin
with

— FOE indicates the direction of translational motion

— Pixels in a perspective projection image do not correspond to
equal angular samples of directions

» in the periphery, a pixel corresponds to a wide range of directions

— Solution - represent the array of accumulators as a sphere,

with an equiangular sampling of the surface of the sphere

» Each normal vector will then cast votes for all samples in a hemisphere

» Simple mathematical relationship between the spherical coordinate system
of the array of counters, and the image coordinate system

=

Time-varying image analysis- 64 Zoran Duric



