.9
Third Edition & thL anter —
e - A3V
representation
ang gescription

Image Processing, Analysis,
and Machine Vision

Milan Sonka
Vaclav Hlavac

Roger Boyle

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

IMAGE]

{ HL

-
Partial borders J Complete borders

\- 1|
Y ¥
(. .
Projections] [dl-els?g:;tnocrg
\,
¥

Heunistic Math.
descriptors| |descriptors

¥ 1

Syntactic Statistical
description) description

f Y
. A o
Syntactic Statistical
recognition recognition
|]
¥ Y
High-level

image
representation

J

f
Image
L understanding)

N\

Figure 8.1: Image analysis and understanding methods.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

(a) (b) (c)

: %q%

(d) (e) (£)

Figure 8.2: (a) Original image 640 x 480. (d) Contours of (a). (b) Original image 160 x 120.
(e) Contours of (b). (¢) Original image 64 x 48. (f) Contours of (c).

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Algorithm 8.1: 4-neighborhood and 8-neighborhood region identification

1. First pass: Search the entire image R row by row and assign a non-zero value
v to each non-zero pixel (7, 7). The value v is chosen according to the labels
of the pixel’s neighbors, where the property neighboring is defined by Figure 8.3.
(‘neighbors’ outside the image R are not considered),

« If all the neighbors are background pixels (with pixel value zero), R(i, j) is
assigned a new (and as yet) unused label.

o If there is just one neighboring pixel with a non-zero label, assign this label to
the pixel R(z, 7).

o If there is more than one non-zero pixel among the neighbors, assign the label
of any one to the labeled pixel. If the labels of any of the neighbors differ

(label collision), store the label pair as being equivalent. Equivalence pairs are
stored in a separate data structure—an equivalence table.

2. Second pass: All of the region pixels were labeled during the first pass, but some
regions have pixels with different labels (due to label collisions). The whole image
is scanned again, and pixels are re-labeled using the equivalence table information
(for example, with the lowest value in an equivalence class).

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

(a) (b)
Figure 8.3: Masks for region identification. (a) 4-connectivity. (b) 8-connectivity. (c) Label
collision.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Algorithm 8.2: Region identification in run length encoded data

1. First pass: Use a new label for each continuous run in the first image row that is
not part of the background.

2. For the second and subsequent rows, compare positions of runs.

« Ifarun in a row does not neighbor (in the 4- or 8-sense) any run in the previous
row, assign a new label.

» If a run neighbors precisely one run in the previous row, assign its label to the
new rumn.

o If the new run neighbors more than one run in the previous row, a label
collision has occurred.

Collision information is stored in an equivalence table, and the new run is labeled
using the label of any one of its neighbors.

3. Second pass: Search the image row by row and re-label the image according to the
equivalence table information.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

CO 0000 OO0

o[+ =+ =+ =+ [ci]o
oo o o|t[a ao
=X SR=
[aa T an

0
0
0

0
0
0

210

0005
66/55522222

00000000000

00000[22|0
0[555]222]0
0000[555[2222
0|17.7]0 0 0[50 2

000000000

0
0

(c)

Figure 8.4: Object identification in 8-connectivity. (a), (b). (¢) Algorithm steps. Equivalence

table after step (b): 2-5, 5-6, 2-4.

22222220

0000J222222222(0

013 3]0 0 0)2{02]0 02 2|0
00000000000000

=)
o
o
=
=)
<o
o
o
o
o
o
o
o
o

00000000000

000000000
Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Algorithm 8.3: Quadtree region identification

1. First pass: Search quadtree nodes in a given order—e.g., beginning from the root
and in the NW, NE, SW, SE directions. Whenever an unlabeled non-zero leaf
node is entered, a new label is assigned to it. Then search for neighboring leaf
nodes in the E and S directions (plus SE in 8-connectivity). If those leaves are

non-zero and have not yet been labeled, assign the label of the node from which
the search started. If the neighboring leaf node has already been labeled, store the
collision information in an equivalence table.

2. Repeat step 1 until the whole tree has been searched.

. Second pass: Re-label the leaf nodes of the quadtree according to the equivalence
table.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

(b)

Figure 8.5: Co-ordinate systems. (a) Rectangular (Cartesian). (b) Polar. (¢) Tangential.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.6: Chain code in 4-connectivity.
and its derivative. Code: 3, 0,0, 3, 0. 1, 1,
2,1, 2,3, 2; dervative: 1,0, 3,1, 1.0, 1, 3,
1,1, 3, 1.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.7: Curvature.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(c) (d)
Figure 8.8: Bending energy. (a) Chain code 0, 0, 2,0, 1,0, 7, 6, 0, 0. (b) Curvature 0, 2, -2, 1,
-1, -1, -1, 2, 0. (¢) Sum of squares gives the bending energy. (d) Smoothed version.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

@

A NN

Figure 8.9: Signature. (a) Construction. (b) Signatures for a circle and a triangle.

(a)

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(®)

Figure 8.10: Chord distribution.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

(q(shy(s)

Figure 8.11: Fourier description of boundaries. (a) Descriptors T,. (b) Descriptors S,,.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.12: Tolerance interval.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.13: Recursive boundary splitting.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.14: Structural description of chro-
mosomes by a chain of boundary segments,
code word: d. b, a, b, e. b, a, b, d, b, a. b,
c, b, a, b. Adapted from [Fu, 197}].

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Increasing scale

Increasing resolution
(a) (b)

Figure 8.15: Scale-space image. (a) Varying number and locations of curve segmentation points
as a function of scale. (b) Curve representation by an interval tree.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(©

Figure 8.16: Splines of order n. (a). (b), (¢) Convex n + l-polygon for a B-spline of the n*®
order. (d) 3"-order spline.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

i i+l

Figure 8.17: The only four non-zero base functions for s € (¢,2 + 1).

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.18: Change of shape caused by a pro-
jective transform. The same rectangular cross
section is represented by different polygons in
the image plane.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.19: Cross ratio: four collinear points
form a projective invariant.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(a) ()

Figure 8.20: Five co-planar points form two cross-ratio invariants. (a) Co-planar points.
(b) Five points form a system of four concurrent lines. (¢) The same five points form another

svstem of four co-planar lines.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.21: Object recognition based on shape invariants. (a) Original image of overlapping
objects taken from an arbitrary viewpoint. (b) Object recognition based on line and conic
invariants. Courtesy of D. Forsyth, The University of Iowa; C. Rothwell, A. Zisserman, University of
Ozford; J. Mundy, General Electric Corporate Research and Development, Schenectady, NY.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Algorithm 8.4: Calculating area in quadtrees
. Set all region area variables to zero, and determine the global quadtree depth H;
for example, the global quadtree depth is H = 8 for a 256 x 256 image.

. Search the tree in a systematic way. If a leaf node at a depth h has a non-zero
label, proceed to step 3.

. Compute:

area[region_label] = area[region_label] + 4H 1)

. The region areas are stored in variables area[region_label].

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Algorithm 8.5: Region area calculation from Freeman 4-connectivity chain code
representation

1. Set the region area to zero. Assign the value of the starting point ¢ co-ordinate to
the variable vertical position.

2. For each element of the chain code (values 0, 1, 2, 3) do

switch(code) {
case 0O:
area := area - vertical_position;
break;
case 1:

vertical_position := vertical_position + 1;
break;

case 2:
area := area + vertical_position;
break;

case 3:
vertical_position := vertical_position - 1;
break;

y

3. If all boundary chain elements have been processed, the region area is stored in
the variable area.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Honzontal projection

T Height Figure 8.22: Projections.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.23: Eccentricity.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

(b)

Figure 8.24: Elongatedness: (a) bounding rectangle gives acceptable results; (b) bounding
rectangle cannot represent elongatedness.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(a) ()

Figure 8.25: Compactness: (a) compact: (b) non-compact.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Algorithm 8.6: Region convex hull construction

1. Find all pixels of a region R with the minimum row co-ordinate; among them, find
the pixel P with the minimum column co-ordinate. Assign Py = Py, v = (0, —1);
the vector v represents the direction of the previous line segment of the convex

hull.

. Search the region boundary in an anti-clockwise direction (Algorithm 6.7) and

compute the angle orientation ¢, for every boundary point P,, which lies after
the point P; (in the direction of boundary search—see Figure 8.26). The angle
orientation ¢, is the angle of vector P;P,,. The point P, satisfying the condition
Yq = min, ¢, is an element (vertex) of the region convex hull.

3. Assign v =P, P,, P, =P,.
4. Repeat steps 2 and 3 until P; = P;.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Figure 8.26: Convex hull.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(a) (b) (c)
Figure 8.27: Directional function 4. (a) d(x,y.z) = 1. (b) é(x,y,z) = 0. (¢) d(x.,y,z) = —1.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

>

e

(@) (®)
Figure 8.28: Convex hull detection. (a) First three vertices A, B, C' form a triangle. (b) If the
next vertex I is positioned inside the current convex hull A BC, current convex hull does not
change. (c) If the next vertex D is outside of the current convex hull, it becomes a new vertex
of the new current convex hull ABCDA. (d) In this case, vertex B must be removed from the
current convex hull and the new current convex hull is ADCA.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Algorithm 8.7: Simple polygon convex hull detection

1. Initialize.
= =l
b:=0;
input vj; input vso; input vg;
if (d(vy,vo.v3) >0)
{ push vy;
push va; }
else
{ push wvg;
push vi; }
push vg;
insert vs;

2. If the next vertex v is inside the current convex hull H, enter and check a new
vertex; otherwise process steps 3 and 4;
input v;
while (d(v.dp,dpy1) =0 AND O(di—q,d;,v) =0)
input v;

3. Rearrange vertices in H, top of the list.
while (d(d¢—1.de,v) <0)
pop de;
push v;
4. Rearrange vertices in H, bottom of the list.
while (d(v,dp,dp4+1) <0)
remove dp;
insert v;
go to step 2;

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Figure 8.20: Example of convex hull detection. (a) The processed region—polvgon ABCDEA.
(b) Vertex D is entered and processed. (¢) Vertex I becomes a new vertex of the current convex
hull ADC'. (d) Vertex E is entered and processed, E does not become a new vertex of the current
convex hull. (e) The resulting convex hull DCAD.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Figure 8.30: Concavity tree construction. (a) Convex hull and concave residua. (b) Concavity
tree.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Algorithm 8.8: Skeleton by thinning

1. Let R be the set of region pixels, H;(R) its inner boundary, and H,(R) its outer
boundary. Let S(R) be a set of pixels from the region R which have all their

neighbors in 8-connectivity either from the inner boundary H;(R) or from the
background—from the residuum of R. Assign R4 = R.

2. Construct a region R, ., which is a result of one-step thinning as follows

Ruew = S(Rola) U [Rola — Hi(Roia)] U [Ho(S(Rold)) N Rold] -

3. If Ryow, = Ro1q, terminate the iteration and proceed to step 4. Otherwise assign
Ru1qa = Ryevw and repeat step 2.

4. R, is a set of skeleton pixels, the skeleton of the region R.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Iteration 1

[Hy(S(Ryy)) N R]

Figure 8.31: Skeleton by thinning (Algorithm 8.8).

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Figure 8.32: Region skeletons; small changes in border can have a significant effect on the
skeleton.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

T

v
£ 1%
SN oﬁ;ﬁ

(b)

Figure 8.33: Region skeletons, see Figures 6.1a and 8.2a for original images; thickened for
visibility.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Algorithm 8.9: Region graph construction from skeleton

1. Assign a point description to all skeleton points—end point, node point, normal
point.

2. Let graph node points be all end points and node points. Connect any two graph
nodes by a graph edge if they are connected by a sequence of normal points in the
region skeleton.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

BAAA

Figure 8.34: Region decomposition. (a) Region. (b) Primary regions. (¢) Primary sub-regions
and kernels. (d) Decomposition graph.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

(c)

Figure 8.35: Binary relation to be left of. see text.

Copyrighti©2008, TThomson| Engineering, a division of TThomson Learning| Ltd.

Summary

Shape representation and description

= Region description generates a numeric feature vector or a non-
numeric syntactic description word, which characterize properties (for
example, shape) of the described region.

While many practical shape description methods exist, there is no
generally accepted methodology of shape description. Further, it is not
known what is important in shape.

Shape may change substantially with image resolution. Conventional
shape descriptions change discontinuously with changes in resolution.
A scale-space approach aims to obtain continuous shape descriptions
for continuous resolution changes.

The shape classes represent the generic shapes of the objects
belonging to the same classes. Shape classes should emphasize
shape differences among classes, while the shape variations within
classes should not be reflected in the shape class description.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Summary

Region identification
= Region identification assigns unique labels to image regions.

= |f nonrepeating ordered numerical labels are used, the largest integer
label gives the number of regions in the image.

Contour-based shape descriptors

= Chain codes describe an object by a sequence of unit-size line
segments with a given orientation, called Freeman’s code.

= Simple geometric border representations are based on geometric
properties of described regions, e.g.:

* Boundary length.
* Curvature.
* Bending energy.
* Signature.

* Chord distribution.
Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Summary

Contour-based shape descriptors cont.

= Fourier shape descriptors can be applied to closed curves, co-
ordinates of which can be treated as periodic signals.

Shape can be represented as a sequence of segments with specified
properties. If the segment type is known for all segments, the boundary
can be described as a chain of segment types, a code word consisting
of representatives of a type alphabet.

B-splines are piecewise polynomial curves whose shape is closely
related to their control polygon—a chain of vertices giving a polygonal
representation of a curve. B-splines of third order are most common,
representing the lowest order which includes the change of curvature.

Shape invariants represent properties of geometric configurations that
remain unchanged under an appropriate class of transforms; machine
vision is especially concerned with the class of projective transforms.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Summary

Region-based shape descriptors

= Simple geometric region descriptors use geometric properties of
described regions:

* Area. * Elongatedness.

* Euler’s number. * Rectangularity.

* Projections. * Direction.

* Height, width. * Compactness.

* Eccentricity.

= Statistical moments interpret a normalized gray-level image function

as a probability density of a 2D random variable. Properties of this
random variable can be described using statistical

characteristics—moments. Moment-based descriptors can be defined
to be independent of scaling, translation, and rotation.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Summary

Region-based shape descriptors cont.

= The convex hull of a region is the smallest convex region H which
satisfies the condition R H.

More complicated shapes can be described using region
decomposition into smaller and simpler sub-regions. Objects can be
represented by a planar graph with nodes representing sub-regions
resulting from region decomposition. Region shape can then be
described by the graph properties. There are two general approaches
to acquiring a graph of sub-regions:

* Region thinning.

* Region decomposition.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Summary

Region-based shape descriptors cont.

= Region thinning leads to the region skeleton that can be described
by a graph. Thinning procedures often use a medial axis transform to
construct a region skeleton. Under the medial axis definition, the
skeleton is the set of all region points which have the same minimum
distance from the region boundary for at least two separate boundary

points.

Region decomposition considers shape recognition to be a
hierarchical process. Shape primitives are defined at the lower level,
primitives being the simplest elements which form the region. A graph
Is constructed at the higher level—nodes result from primitives, arcs
describe the mutual primitive relations.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

Summary

Region-based shape descriptors cont.

= Region neighborhood graphs represents every region as a graph
node, and nodes of neighboring regions are connected by edges. The
region adjacency graph is a special case of the region neighborhood
graph.

Shape classes

= Shape classes represent the generic shapes of the objects belonging
to the class and emphasize shape differences among classes.

= A widely used representation of in-class shape variations is
determination of class-specific regions in the feature space.

Copyright ©2008, TThomsoenI Engineering, aidivision ofi Themson Learning Ltd.

