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Edge and local feature detection

 Gradient based edge detection
 Edge detection by function fitting
 Second derivative edge detectors
 Corner detection
 Color edge detection
 Edge linking and the construction of the chain

graph
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Importance of edge detection in computer
vision

 Information reduction
 replace image by a cartoon in which objects and surface

markings are outlined
 these are the most informative parts of the image

 Biological plausibility
 initial stages of mammalian vision systems involve

detection of edges and local features
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1-D edge detection

 An ideal edge is a step function
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1-D edge detection

 The first derivative of I(x) has a peak at the edge
 The second derivative of I(x) has a zero crossing

at the edge
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1-D edge detection

 More realistically, image edges are blurred and
the regions that meet at those edges have noise or
variations in intensity.
 blur - high first derivatives near edges
 noise - high first derivatives within regions that meet at

edges
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Edge detection in 2-D

 Let f(x,y) be the image intensity function.  It has
derivatives in all directions
 the gradient is a vector pointing in the direction in which the

first derivative is highest, and whose length is the magnitude
of the first derivative in that direction.

 If f is continuous and differentiable, then its gradient
can be determined from the directional derivatives in
any two orthogonal directions - standard to use x and y
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Math Refresher: Vectors and Derivatives

O x

y

x0

y=f(x)

θ

f’(x)=df/dx=tanθ Partial derivatives: ∂f/∂x, ∂f/∂y
     [∂f(x,y)/∂x|y=y0=f’(x,y0)]
Gradient:
    ∇f(x,y)= i∂f/∂x + j∂f/∂y
[i,j – unit vectors in x,y directions]

y

xO

f(x,y)

∇f(x0,y0)
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Math Refresher: Vectors and Derivatives (cont.)

a
b

ca

c=a+b
a=c−b

x

y

iδx

jδy d

d=iδx+jδy

α
e

f

f=ix1+jy1, e=ix2+jy2
Inner product:
f·e =x1x2+y1y2 =|f|⋅|e|cosα

|f|cosα

Directional derivative:    ∂f/∂n = ∇f·n

a=ix1+jy1, b=ix2+jy2
c=a+b=i(x1+x2)+j(y1+y2)
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Edge detection in 2-D

 With a digital image, the partial derivatives
are replaced by finite differences:
 Δxf = f(x,y) - f(x-1, y)
 Δyf = f(x,y) - f(x, y-1)

 Alternatives are (much better):
 Δ2xf = 0.5*(f(x+1,y) - f(x-1,y))
 Δ2yf = 0.5*(f(x,y+1) - f(x,y-1))

 Robert’s gradient
 Δ+f = f(x+1,y+1) - f(x,y)
 Δ-f = f(x,y+1) - f(x+1, y)

0   1
-1  0

1   0
0  -1
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Edge Detection in 2-D

 Sobel mask (gradient):
 fx = [f(x+1,y–1)+2f(x+1,y)+f(x+1,y+1) –

      f(x–1,y–1) – 2f(x–1,y) – f (x–1,y+1)]/8

 fy = [f(x+1,y+1)+2f(x,y+1)+f(x–1,y+1) –
   f(x+1,y–1) – 2f(x1,y–1) – f (x–1,y–1)]/8

              –1  –2 –1                              –1    0   1
8fx ~        0    0   0                8fy ~     –2    0   2

             1    2   1                              –1    0   1
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Edge detection in 2-D

 How do we combine the directional derivatives to
compute the gradient magnitude?
 use the root mean square (RMS) as in the continuous case
 take the maximum absolute value of the directional derivatives



Edge and local feature detection - 12 Zoran Duric

Combining smoothing and differentiation -
fixed scale

 Local operators like the Roberts give high
responses to any intensity variation
 local surface texture

 If the picture is first smoothed by an averaging
process, then these local variations are removed
and what remains are the “prominent” edges
 smoothing is blurring, and details are removed

 Example f2x2(x,y) = 1/4[f(x,y) + f(x+1,y) + f(x,y+1) + f(x+1,y+1)]
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Smoothing - basic problems

 What function should be used to smooth or
average the image before differentiation?
 box filters or uniform smoothing

 easy to compute
 for large smoothing neighborhoods assigns too much weight to

points far from an edge

 Gaussian, or exponential, smoothing
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Smoothing and convolution

 The convolution of two functions, f(x) and g(x) is
defined as

 When the functions f and g are discrete and when
g is nonzero only over a finite range [-n,n] then
this integral is replaced by the following
summation:

h(x) = g(x' ) f (x ! x' )dx'
!"

"

# = g(x) $ f (x)

h(i) = g( j) f (i + j)
j=! n

n

"
f

g
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Example of 1-d convolution

8    7     8    22    23  12   10   11    9    5    6     4

 1      3     5    3     11/13

12

 1      3     5    3     1

17

 1      3     5    3     1

18

f

g

h

h(4) = g( j) f (4 + j)
j=!2

2

"

= g(!2) f (2) + g(!1) f (3) + g(0) f (4) + g(1) f (5) + g(2) f (6)

 1     2     3     4     5     6
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Smoothing and convolution

 These integrals and summations extend simply to
functions of two variables:

 Convolution computes the weighted sum of the gray
levels in each nxn neighborhood of the image, f, using
the matrix of weights g.

 Convolution is a so-called linear operator because
 g*(af1 + bf2) = a(g*f1) + b(g*f2)

h(i, j) = f (i, j)!g = g(k,l) f (i + k, j + l)
l=" n

n

#
k= " n

n

#
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2-D convolution

h(5,5) = g(k,l) f (5 + k,5 + l)
l= !1

1

"
k= !1

1

"

= g(!1, !1) f (4,4) + g(!1,0) f (4,5) + g(!1,1) f (4, 4)

+g(0,!1) f (5,4) + g(0,0) f (5,5) + g(0,1) f (5,6)

+g(1,!1) f (6,4) + g(1,0) f (6,5) + g(1,1) f (6,6)
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Smoothing and convolution
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Gaussian smoothing

 Advantages of Gaussian filtering
 rotationally symmetric (for large filters)
 filter weights decrease monotonically from central

peak, giving most weight to central pixels
 Simple and intuitive relationship between size of σ and

size of objects whose edges will be detected in image.
 The gaussian is separable:
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Advantage of separability

 First convolve the image with a one dimensional
horizontal filter

 Then convolve the result of the first convolution
with a one dimensional vertical filter

 For a k×k Gaussian filter, 2D convolution requires
k2 operations per pixel

 But using the separable filters, we reduce this to
2k operations per pixel.
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Separability

2      3    3

3     5     5

4     4     6

1    2     1

1

2
1

18

11

18

18

11

18
65

1    2     11

2
1

1     2     1

2     4     2

1    2     1

2      3    3

3     5     5

4     4     6

=2 + 6 + 3 = 11

= 6 + 20 + 10 = 36

= 4 + 8 + 6 = 18

65

=

x
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Advantages of Gaussians

 Convolution of a Gaussian with itself is another
Gaussian
 so we can first smooth an image with a small Gaussian
 then, we convolve that smoothed image with another

small Gaussian and the result is equivalent to smoother
the original image with a larger Gaussian.

 If we smooth an image with a Gaussian having sd σ
twice, then we get the same result as smoothing the
image with a  Gaussian having standard deviation
(2)1/2 σ
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Use binomial filters as
approximations of Gaussians

Filter
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

σ2= p/4
1/4
1/2
3/4
1

5/4
3/2
7/4
2

Faster computations, integer operations

p (order)
1
2
3
4
5
6
7
8

f (coeff.)
1/2
1/4
1/8
1/6
1/32
1/64
1/128
1/256
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Combining smoothing and differentiation -
fixed scale

 Non-maxima suppression - Retain a point as an
edge point if:
 its gradient magnitude is higher than a threshold
 its gradient magnitude is a local maxima in the gradient

direction
simple thresholding will
compute thick edges
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Non-maxima suppression

Simple cases:
fx=0, fy≠0  // vertical edge
fx≠0, fy=0  // horizontal edge
|fx|=|fy|      // diagonal edge
m(x,y)=||∇f(x,y)||=((fx)2+(fy)2)1/2

Example:
  fx=fy, fx>0, fy>0
  Keep (x,y) if
  m(x,y)≥m(x’,y’) & m(x,y)>m(x’’,y’’)

Messy cases: all other edges

(x’,y’)

(x,y)

(x’’,y’’)
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Messy cases: Edge interpolation

fy

fx

a

b

∇f =ifx + jfy ;  a+b=1
m(x,y)=||∇f(x,y)||=((fx)2+(fy)2)1/2

m(x’,y’)=bm(x+1,y)+am(x+1,y+1)
a=fy/fx,   b=1–fy/fx
Multiply everything by fx;
fx*m(x’,y’)=(fxfy)m(x+1,y)+fym(x+1,y+1)
Similarly: m(x’’,y’’) [(x-1,y-1) & (x-1,y)]

Keep (x,y) if
 m(x,y)≥m(x’,y’) & m(x,y)>m(x’’,y’’)

(x’,y’)

(x,y) (x+1,y)

(x+1,y+1)
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Summary of basic edge detection steps

 Smooth the image to reduce the effects of local
intensity variations
 choice of smoothing operator practically important

 Differentiate the smoothed image using a digital
gradient operator that assigns a magnitude and
direction of the gradient at each pixel

 Threshold the gradient magnitude to eliminate low
contrast edges
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Summary of basic edge detection steps

 Apply a nonmaxima suppression step to thin the
edges to single pixel wide edges
 the smoothing will produce an image in which the

contrast at an edge is spread out in the neighborhood of
the edge

 thresholding operation will produce thick edges
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The scale-space problem

 Usually, any single choice of σ does not produce a good
edge map
 a large σ will produce edges form only the largest objects, and

they will not accurately delineate the object because the
smoothing reduces shape detail

 a small σ will produce many edges and very jagged boundaries of
many objects.

 Scale-space approaches
 detect edges at a range of scales [σ1, σ2]
 combine the resulting edge maps

 trace edges detected using large σ down through scale space to obtain
more accurate spatial localization.
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Examples

Gear image 3x3 Gradient magnitude
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Examples

High threshold
Medium threshold
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Examples

low threshold
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Examples

Smoothed 5x5 Gaussian 3x3 gradient magnitude
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Examples
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Examples

smoothed 15x15 Gaussian 3x3 gradient magnitude
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Examples
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Gray Level Human Image
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Laplacian edge detectors

 Directional second derivative in direction of gradient has a
zero crossing at gradient maxima

 Can “approximate” directional second derivative with
Laplacian

 Its digital approximation is
 ∇2f(x,y) = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4

f(x,y)
                 =   [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] +

[f(x,y+1)-f(x,y)] - [f(x,y) - f(x,y-1)]

0   1   0
1   -4  1
0   1   0

2

2

2

2

y
f

x
f
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!
+

!
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Laplacian edge detectors

 Laplacians are also combined with smoothing for
edge detectors
 Take the Laplacian of a Gaussian smoothed image -

called the Mexican Hat operator or DoG (Difference of
Gaussians)

 Locate the zero-crossing of the operator
 these are pixels whose DoG is positive and which have

neighbor’s whose DoG is negative or zero

 Usually, measure the gradient or directional first
derivatives at these points to eliminate low contrast
edges.
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Laplacian of Gaussian or “Mexican Hat”
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Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of
Gaussian

Zero crossings
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Laplacian of Gaussian

13 x 13 Mexican hat zero crossings
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Edge linking and following

 Group edge pixels into chains and chains into
large pieces of object boundary.
 can use the shapes of long edge chains in recognition

 slopes
 curvature
 corners
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Edge linking and following

 Basic steps
 thin connected components of edges to one pixel thick
 find simply connected paths
 link them at corners into a graph model of image

contours
 optionally introduce additional corners on interiors of simple

paths

 compute local and global properties of contours and
corners
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Finding simply connected chains

 Goal:  create a graph structured representation
(chain graph)  of the image contours
 vertex for each junction in the image
 edge connecting vertices corresponding to junctions

that are connected by a chain;  edge labeled with chain

a
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Creating the chain graph

 Algorithm: given binary image, E,  of thinned
edges
 create a binary image, J,  of junctions and end points

 points in E  that are 1 and have more than two neighbors that
are 1 or exactly one neighbor that is a 1

 create the image E-J = C(chains)
 this image contains the chains of E, but they are broken at

junctions
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Creating the chain graph

 Perform a connected component analysis of C. For each
component store in a table T:
 its end points (0 or 2)
 the list of coordinates joining its end points

 For each point in J:
 create a node in the chain graph , G, with a unique label
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Creating the chain graph

 For each chain in C
 if that chain is a closed loop (has no end points)

 choose one point from the chain randomly and create a new
node in G corresponding to that point

 mark that point as a “loop junction” to distinguish it from other
junctions

 create an edge in G connecting this new node to itself, and
mark that edge with the name of the chain loop

 if that chain is not a closed loop, then it has two end
points
  create an edge in G linking the two points from J adjacent to

its end points
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Creating the chain graph

 Data structure for creating the chain graph
 Biggest problem is determining for each open

chain in C the points in J that are adjacent to its
end points
 create image J in which all 1’s are marked with their

unique labels.
 For each chain in C

 Examine the 3x3 neighborhood of each  end point of C in J
 Find the name of the junction or end point adjacent to that end

point from this 3x3 neighborhood.
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Finding internal “corners” of chains

 Chains are only broken at junctions
 but important features of the chain might occur at

internal points
 example: closed loop corresponding to a square - would

like to find the natural corners of the square and add
them as junctions to the chain graph (splitting the
chains at those natural corners)

 Curve segmentation
 similar to image segmentation, but in a 1-D form

 local methods, like edge detectors
 global methods, like region analyzers



Edge and local feature detection - 51 Zoran Duric

Local methods of curve segmentation

 Natural locations to segment contours are points where the
slope of the curve is changing quickly
 these correspond, perceptually, to “corners” of the curve.

 To measure the change in slope we are measuring the
curvature of the curve
 straight line has 0 curvature
 circular arc has constant curvature corresponding to 1/r
 Can estimate curvature by fitting a simple function (circular arc,

quadratic function, cubic function) to each neighborhood of a
chain, and using the parameters of the fit to estimate the
curvature at the center of the neighborhood.
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Formulae for curvature

 Consider moving a point, P, along a curve.
 Let T be the unit tangent vector as P moves

 T has constant length (1)
 but the direction of T, φ, changes from point to point unless the

curve is a straight line
 measure this direction as the angle between T and the x-axis

R

P

T = dR / ds, s distance along curve

φ
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Formulae for curvature

 The curvature, κ, is the instantaneous rate of change of φ 
with respect to s, distance along the curve
 κ = dφ / ds
 ds = [dx2 + dy2]1/2

 φ = tan-1dy/dx

R

P

T = dR / ds, s distance along curve

φ
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Formulae for curvature

 Now

and

so

d! / dx =

d
2
y

dx
2

1+ (
dy

dx
)
2

ds / dx = 1+ (
dy

dx
)
2

! = d" / ds =
d" / dx

ds / dx
=

d
2
y

dx
2

[1+ (
dy

dx
)
2
]
3 / 2
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Example - circle

 For the circle
 s = aθ
 φ = θ + π/2
 so κ = dφ/ds = dθ/adθ = 1/a

a

θ s φ
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Local methods of curve segmentation

 There are also a wide variety of heuristic methods
to estimate curvature-like local properties
 For each point, p , along the curve
 Find the points k pixels before and after p on the curve

(p+k, p-k) and then measure
 the angle between pp+k and pp-k

 the ratio s/t

k
k

t
s

θ



Edge and local feature detection - 57 Zoran Duric

Local methods of curve segmentation

 Similar problems to edge detection
 what is the appropriate size for k?
 how do we combine the curvature estimates at different

scales?
 boundary problems near the ends of open curves - not

enough pixels to look out k in both directions
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Back to smoothing functions

 To smooth an image using a Gaussian filter we must
 choose an appropriate value for σ, which controls how

quickly the Gaussian falls to near zero
 small σ produces filter which drops to near zero quickly - can be

implemented using small digital array of weights
 large σ produces a filter which drops to near zero slowly - will be

implemented using a larger size digital array of weights
 determine the size weight array needed to adequately

represent that Gaussian
 choose a size for which the values at the edges of the weight array

are 10-k as large as the center weight
 weight array needs to be of odd size to allow for symmetry
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Gaussian smoothing

 To smooth an image using a Gaussian filter we must
 sample the Gaussian by integrating it over the square pixels of

the array of weights and multiplying by the scale factor to obtain
integer weights
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Gaussian smoothing

 Because we have truncated the Gaussian the weights
will not sum to 1.0 x scale factor
 in “flat” areas of the image we expect our smoothing filter to

leave the image unchanged
 but if the filter weights do not sum to 1.0 x scale factor,  it will

either amplify (> 1.0) or de-amplify the image
 normalize the weight array by dividing each entry by the sum

of the all of the entries
 convert to integers
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Use binomial filters as
approximations of Gaussians

Filter
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

σ2= p/4
1/4
1/2
3/4
1

5/4
3/2
7/4
2

Faster computations, integer operations

p (order)
1
2
3
4
5
6
7
8

f (coeff.)
1/2
1/4
1/8
1/6

1/32
1/64
1/128
1/256
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Edge detection by function fitting

 General approach
 fit a function to each neighborhood of the image
 use the gradient of the function as the digital gradient of

the image neighborhood
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Edge detection by function fitting

 Example:  fit a plane to a 2x2 neighborhood
 z = ax + by + c; z is gray level - need to determine a,b,c
 gradient is then (a2 + b2)1/2

 neighborhood points are f(x,y), f(x+1,y), f(x,y+1) and
f(x+1,y+1)

 Need to minimize

 Solve this and similar problems by:

 differentiating with respect to a,b,c, setting results to 0,
and

 solving for a,b,c in resulting system of equations! 

E(a,b,c) = [a(x + i) + b(y + j) + c " f (x + i,y + j)]
2

j= 0

1

#
i= 0

1

#
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Edge detection by function fitting

 ∂E / ∂a = ΣΣ2[a(x+i) + b(y+j) + c - f(x+i,y+j)](x+i)
 ∂E / ∂b = ΣΣ2[a(x+i) + b(y+j) + c - f(x+i,y+j)](y+j)
 ∂E / ∂c = ΣΣ2[a(x+i) + b(y+j) + c - f(x+i,y+j)]
 It is easy to verify that

a = [f(x+1,y) + f(x+1,y+1) - f(x,y) - f(x,y+1)]/2
b = [f(x,y+1) + f(x+1,y+1) - f(x,y) - f(x+1,y)]/2

 a and b are the x and y partial derivatives

-1   1
-1   1

a = b =  1   1
-1  -1
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Edge detection by function fitting

 Could also fit a higher order surface than a plane
 with a second order surface we could find the (linear)

combination of pixel values that corresponds to the
higher order derivatives, which can also be used for
edge detection

 Would ordinarily use a neighborhood larger than
2x2
 better fit
 for high degree functions need more points for the fit to

be reliable.
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Color Edge Detection

 Jacobian J

 Structure matrix S

! 

J =

rx

gx

bx

ry

gy

by

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

! 

S = J
T
J =

rx
2

+ gx
2

+ bx
2

rxry + gxgy + bxby

rxry + gxgy + bxby ry
2

+ gy
2

+ by
2

" 

# 
$ 

% 

& 
' 
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Edge strength

 Edge strength at (x,y) is given by

 Edge strength does not depend on the coordinate
system; it is possible to rotate the coordinate system
to make the elements that are not on the main
diagonal zero! 

trace(S) = rx
2

+ gx
2

+ bx
2

+ ry
2

+ gy
2

+ by
2

! 

S =
a b

b c

" 

# 
$ 

% 

& 
' ( S'=

)
1

0

0 )
2

" 

# 
$ 

% 

& 
' 
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 Eigenvalues of S

 Solve
Sx = λx, λ scalar is an eigenvalue of S,

   x=(x1 x2)T

 For nontrivial solution (x=0)  
det(S–λI)=0   ⇔   (a – λ)*(c – λ) – b2=0

 λ1 should be 0

! 

"
1,2

=
1

2
(a + c) ± (a + c)2 + 4(b2 # ac)( )



Edge and local feature detection - 69 Zoran Duric

Eigenvectors of S

(a – λ1)x + by = 0
bx + (c – λ1) = 0
Set y = 1, (a – λ1)x  = – by = – b
If (a – λ1) ≠ 0  (edge not horizontal or vertical, x=1 otherwise)

x = – b/(a – λ1)
Normalize to get edge direction:

! 

e =
x

x
2

+1
,

1

x
2

+1

" 

# 
$ 

% 

& 
' 
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Edge strength and direction

 Edge strength
(λ1)1/2    the larger eigenvalue of S

 Edge gradient direction, the corresponding eigenvector e
 Can apply non-maxima suppression now

(λ1)1/2

e
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Example
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Color edges
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Non-maximum suppression results

Yellow middle:
maximum
gradient edges
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Application: Edge-based background subtraction

 “Learn” background edges (mean values and
standard deviations of horizontal and vertical
edges/derivatives)

 Subtract the background image from a new image
 Mark a point as a foreground if the difference is

significant (should be as large as the larger of the
background and the new image values)
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Edge-based moving object detection

color edge
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Background Subtraction: Edge Classification

Occluding edges:
     edges of objects that

have entered the scene
Occluded edges:

background edges that
have been occluded by
objects

Background edges: (not
shown): edges that
have not changed
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Building Contours through Sampling

 Extract the boundary by background subtraction
 Randomly sample points near the boundary and

link them using simple search
 Resample and rebuild if edges are weak
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Improvements: Building contours through sampling
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The Inertia Tensor (structure matrix)

 Given

compute eigenvalues of S (λ1, λ2)

 Classify: λ1>λ2≈0   (edge)
         λ1 ≈ λ2≈0  (constant value in the neigh.)
         λ1>0, λ2>0   (corner?)
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The Inertia Tensor (structure matrix), cont.

 Edge orientation:

 Coherency:

It ranges from 0 to 1. For an ideal edge it is one.
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