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A computer vision system for tracking multiple people in relatively unconstrained
environments is described. Tracking is performed at three levels of abstraction: re-
gions, people, and groups. A novel, adaptive background subtraction method that
combines color and gradient information is used to cope with shadows and unreli-
able color cues. People are tracked through mutual occlusions as they form groups
and separate from one another. Strong use is made of color information to disam-
biguate occlusion and to provide qualitative estimates of depth ordering and position
during occlusion. Simple interactions with objects can also be detected. The system
is tested using both indoor and outdoor sequences. It is robust and should provide
a useful mechanism for bootstrapping and reinitialization of tracking using more
specific but less robust human models.c© 2000 Academic Press

1. INTRODUCTION

Visual surveillance and monitoring of human activity requires people to be tracked as
they move through a scene. Such a tracking system can be used to learn models of activity
from extended observations. These activity models can then be used to detect unusual or
important events [9, 16] and to constrain tracking. Interactions with objects that are often of
interest include picking up an object, placing an object in the scene, or passing an object to
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FIG. 1. Frames from a sequence of people being tracked as they form groups.

another person. Tracking people in relatively unconstrained, cluttered environments as they
form groups, interact, and part from one another requires robust methods that cope with
the varied motions of the humans, occlusions, and changes in illumination. The significant
(sometimes complete) occlusions that occur when people move in groups or interact with
other people cause considerable difficulty to many tracking schemes. However, a system ca-
pable of understanding the activities of interacting people needs to cope with such situations
routinely. Figure 1 shows an example scenario.

Robust tracking of multiple people through occlusions requires person models that are
sufficiently specific to disambiguate occlusions. However, we would like the models to be
general and simple enough to allow robust, real-time tracking. The models must cope with
reasonable changes in illumination, large rotations in depth (people turning to face in a new
direction, possibly while occluded by other people), and varied clothing. In particular, for
outdoor surveillance (especially in cold climates) it is not reasonable to assume that people
wear tightly fitting garments. In a large winter coat, for example, the articulated structure
of the body may barely be discernible. Nor is it reasonable to assume that garments are
uniformly colored. Homogeneous “blobs” of color will often not correspond well to body
parts. However, color and texture do suggest decompositions of humans into visual parts.
These parts are often somewhat different from those suggested by shape and motion. They
depend more on clothing and vary with a person’s mode of dress. The color distributions
of items of clothing are typically quite stable under rotation in depth, scaling, and partial
occlusion. Furthermore, color models are easily adapted to account for gradual changes
in illumination. This paper presents an efficient, color-based tracking system. It can be
viewed as complementary to tracking methods that use more specific human models since
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it provides a reliable platform from which to bootstrap such methods when sufficient image
evidence exists to support their use.

The remainder of this paper is organized as follows. Section 2 briefly reviews some related
work. In Section 3, a novel background subtraction technique that fuses color and gradient
information is described. A general tracking scheme that uses regions, people, and groups
as distinct levels of abstraction is outlined in Section 4. Section 5 describes how adaptive
color models of appropriate complexity can be learned on-line and used to track people
through occlusions. Example sequences in which people are tracked while interacting with
one another and with objects are used to illustrate the approach. Some final comments are
made in Section 6.

2. RELATED WORK

Systems for tracking people have usually employed some form of background subtraction:
Haritaogluet al.used gray-level subtraction [10, 11], Pfinder modeled pixel color variation
using multivariate Gaussians [31], and Gaussian mixtures have also been used in a similar
manner [23, 29]. The car tracking system of Kolleret al. [18] used an adaptive background
model based on monochromatic images filtered with Gaussian and Gaussian derivative
(vertical and horizontal) kernels. Background “subtraction” using these filter outputs yielded
results superior to the use of raw gray levels.

Some systems for surveillance and monitoring of wide-area sites have tracked people by
essentially assuming that each connected component obtained from background subtraction
(and some further processing) corresponds to a moving object [24, 29]. Trackers based on
2D active shape models have been used but can only cope with moderate levels of occlusion
[2, 16]. Color blobs were used in Pfinder to build a person model in a controlled indoor
environment [31]. Intilleet al.’s closed-world tracking was used (for example) to track
players on an American football field [13]. McKenna and Gong used a combination of
motion, skin color, and face detection to track people and their faces [22]. Liptonet al.
combined temporal differencing with template matching to track people and cars in wide-
area scenes [20]. Darrellet al.combined depth from stereo with skin color and face detection
[7]. Bregler proposes an ambitious probabilistic framework for tracking at multiple levels
of abstraction [3]. Many approaches have been proposed for tracking the human body.
The interested reader is referred to reviews of motion understanding approaches [5], hand
gesture recognition [25], visual analysis of human motion [8], and nonrigid motion [1].

The Hydra system [11] developed at the University of Maryland is perhaps the most
similar in its aims to the system described here. It is essentially an extension of the W4
system [10]. Hydra attempts to detect the heads of people in groups and track them through
occlusions. It uses silhouette-based shape models and temporal texture appearance models.
Although effective in many situations, these 2D appearance models will not cope well with
large rotations in depth during occlusions. Hydra is therefore quite effective at tracking
people through occlusions as they walk past one another but it does not cope well when
people leave a group in a different direction from that in which they entered it. Hydra uses
monochromatic image data. In contrast, the system presented in this paper makes extensive
use of color information to build adaptive models that are efficient to compute as well as
being stable under rotations in depth, scaling, and illumination changes.

Some other systems have performed occlusion reasoning by assuming that object motion
is constrained to a ground plane [18, 28]. This assumption enabled a depth ordering to
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be estimated so that it was possible to differentiate occluded from occluding objects. In
contrast, the occlusion reasoning described here makes no ground plane assumption and
therefore has wider applicability.

3. ADAPTIVE BACKGROUND SUBTRACTION

We assume that the camera is stationary and that the background changes only slowly
relative to the motions of the people in the scene. The background model combines pixel
RGB and chromaticity values with local image gradients. The expected variance of these
features is used to derive confidence measures for fusion. The method consists of three
stages and produces a foreground segmentation mask.

3.1. RGB Change Detection

The camera’s R, G, and B channels are assumed to have Gaussian noise. Three variance
parametersσ 2

rcam, σ 2
gcam, σ 2

bcam are estimated for these channels. Some background pixel
can violate the Gaussian assumption because of jitter or small “micromotions” such as
leaves moving on a tree or waves on water. These changes occur on a short timescale
and so cannot be handled using adaptation. Instead they can be considered to give rise
to multimodal, stationary distributions for the pixel’s values. While these distributions
can be modeled as Gaussian mixtures, for example [23, 29], this is usually not worth the
added computational expense since small, isolated regions of jitter or micromotion can be
discarded during grouping. Instead, we estimate variance parameters for each pixel and
these variance parameters are used for background subtraction only when they are greater
than the variance due to camera noise. The stored color background model for a pixel is
[µr , µg, µb, σ

2
r , σ

2
g , σ

2
b ].

Changes in illumination are assumed to occur slowly relative to object motion. The
background model is adapted on-line using simple recursive updates in order to cope with
such changes. Adaptation is performed only at image locations that higher level group-
ing processes label as being clearly within a background region. Recursive estimation of
mean and variance can be performed using the following update equations given the latest
measurementzt+1 at timet + 1 [19, 26]:

µt+1 = αµt + (1− α)zt+1 (1)

σ 2
t+1 = α

(
σ 2

t + (µt+1− µt )
2
)+ (1− α)(zt+1− µt+1)2. (2)

These updates estimate a nonstationary Gaussian distribution. The mean,µ, and the vari-
ance,σ 2, can both be time varying. The constantα is set empirically to control the rate of
adaptation (0< α < 1). This depends on the frame rate and the expected rate of change of
the scene. The smaller the value ofα, the faster the old data are (exponentially) forgotten.
The sequences in this paper were processed usingα = 0.9.Given a new pixel at timet + 1
with RGB values (rt+1, gt+1, bt+1), each of the means and variances in the background
model are updated using Eqs. (1) and (2).

The background model can be used to perform background subtraction as follows. The
current pixelx= (r, g, b) is compared to the model. If|r − µr | > 3 max(σr , σrcam), or if
the similar test forg or b is true, then the pixel is set to foreground. Otherwise it is set
to background. This produces a mask that is considered as a region of interest for further
processing.



46 McKENNA ET AL.

3.2. Gradient and Chromaticity

The assumption that illumination changes slowly is violated when the change is due to
shadows cast by people moving in the scene. Ideally, we would like our background subtrac-
tion method not to label such regions of shadow as foreground. An area cast into shadow often
results in a significant change in intensity without much change in chromaticity. This obser-
vation has been exploited by previous authors to label as shadow pixels that become darker
without significant chromaticity change [12, 31]. Our approach exploits a similar assump-
tion but is somewhat different. As shadows appear and disappear, intensity levels decrease
and increase. Therefore, we assume that any significant intensity change without significant
chromaticity change could have been caused by shadow. Chromaticity is computed as

rc = r/(r + g+ b) (3)

gc = g/(r + g+ b), (4)

and each pixel’s chromaticity is modeled using means and variancesµr c, µgc, σ
2
r c, σ

2
gc.

Adaptive background subtraction is performed as before but using chromaticity values
instead of RGB values.

Often there will be no difference in chromaticity between foreground and background
(e.g., a dark green coat moves in front of grass, or black trousers cross a gray concrete path).
In such cases, we cannot reliably tell based on zeroth-order, pixel-level color information
whether the pixel has changed due to shadow. However, the use of first-order image gradient
information enables us to cope with such cases more effectively.

Gradients are estimated using the Sobel masks in thex andy directions. Each background
pixel’s gradient is modeled using gradient means (µxr , µyr ), (µxg, µyg), (µxb, µyb) and
magnitude variancesσ 2

gr , σ
2
gg, σ 2

gb. Additionally, we compute average variances ¯σ 2
gr , σ̄

2
gg,

σ̄ 2
gb over the entire image area. Adaptive background subtraction is performed as follows.

Given a new pixel valuex= (r, g, b), its spatial gradients (rx, r y), (gx, gy), (bx, by) are
estimated using the Sobel operator. If

√
(rx − µxr )2+ (r y − µyr )2 > 3 max{σgr , σ̄gr }, or if

the similar test for (gx, gy) or (bx, by) is true, then the pixel is set to foreground. Otherwise
it is set to background.

A pixel is flagged as foreground if either chromaticity or gradient information supports
that classification. A detailed description of a similar background subtraction method is
given in [14]. This approach helps to eliminate some types of shadows. Shadows with hard
edges will still be detected as foreground. However, these tend to be near the person and so
cause only small errors during grouping. The long shadows that would cause the greatest
problems for grouping tend to have significant penumbras and these soft edges are not
detected.

Figure 2 shows an example of background subtraction from a sequence of a person
walking and casting a shadow. The center image shows the connected components detected
using an adaptive RGB background model. Much of the shadow is labeled as foreground.
The rightmost image shows the result when gradient and chromaticity information are
combined. Although much of the person’s clothing is almost gray (with low chromatic
content), the connected component detected is a reasonably good segmentation. Only a
very small area of shadow near the person’s feet is detected.

The images resulting from background subtraction are filtered using a 3× 3 median
filter, and a connected-component-labeling algorithm is then applied [15]. Any connected
component whose area is less than a threshold,Tcc, is discarded as being “noise.” A contour
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FIG. 2. Example of background subtraction. (Left) Color image from sequence. (Center) Connected compo-
nents using RGB background model. (Right) Connected components using combined chromaticity and gradient
background model.

collecting algorithm can then be used to delineate foreground objects and thus perform a
background–foreground segmentation.

A foreground connected component,C, is likely to contain holes. Some of these holes
will be due to erroneous segmentation in regions of low chromatic content and low texture.
However, holes can also correspond to true background regions when the body is in certain
postures, e.g., a frontal view of a person with a hand on a hip. Note that it is possible to detect
such holes provided that the background region to which they correspond is not cast into
shadow. This can be done by referring to the mask,Mrgb, produced by the RGB subtraction
described in Section 3.1. Each “background” pixel which is part of a hole contained in a
componentC is set to foreground if the maskMrgb indicates that it is foreground.

Figure 3 shows the resulting segmentation for the sequence shown in Fig. 1. In all the
experiments reported in this paper, adaptive background subtraction was performed using

FIG. 3. Segmented frames from a sequence of people being tracked as they form groups.
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FIG. 4. The effect of varying the threshold on color-based subtraction. From top left: original image (same
as fourth frame in Fig. 1) and results of thresholding at 1, 2, 3, 5, and 10 standard deviations.

thresholds at 3σ . In order to help motivate this choice, Fig. 4 shows the effect of varying
these thresholds. Thresholding atσ resulted in too much background being classified as
foreground. Thresholding at or above 5σ resulted in too much foreground being classified
as background. Thresholding at or around 3σ provides an acceptable trade-off. If data are
normally distributed, 99.7% of the data are within 3σ of the mean. Furthermore, Chebyshev’s
theorem guarantees that 88.9% of the data are within 3σ of the mean regardless of the
distribution.

4. TRACKING THE FOREGROUND

Robust tracking requires multiple levels of representation. Sophisticated models should
only be employed when support is available for them. In fact, many of the articulated
geometric models used for human tracking have had to be initialized by hand in the first
frame of the sequence, e.g., [4, 6]. A robust, integrated system needs less specific models for
tracking; these can be used for initialization and reinitialization of more complex models.
The system described here is not concerned with fitting models of articulated body structure
or accurate labeling of body parts. However, it complements such approaches. We perform
tracking at three levels of abstraction:

Regions.Regions are connected components that have been tracked for at leastTfr frames.
Each region has a bounding box, a support map (mask), a timestamp, and a tracking status.

People.A person consists of one or more regions grouped together. Each person has an
appearance model based on color.

Groups. A group consists of one or more people grouped together. If two people share
a region, they are considered to be in the same group.

A temporally consistent list of tracked regions is maintained during tracking. Temporal
matching is performed based on the support map and bounding box. In practice, simply
matching regions with overlapping bounding boxes was found to be effective. In particular,
prediction was not needed since the visual motions of regions were always small relative
to their spatial extents.
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In each frame, a new region tracker is initialized for each novel region, if any. Regions with
no match are deleted. Regions can split and merge. When a region splits, all the resulting
regions inherit their parent’s timestamp and status. When regions merge, the timestamp and
status are inherited from the oldest parent region. Once a region is tracked for three frames,
it is considered to be reliable and is subsequently considered for inclusion in the class of
people.

It is oversimplistic to assume that regions correspond to people. A person will often split
into multiple regions despite the use of good background subtraction techniques. This is the
case even if morphological operations such as opening and closing are used. Therefore, a
person is initialized when one or more regions that currently belong to no person satisfy a set
of rules. In order to form a person, the regions must be in close proximity, their projections
onto thex axis must overlap, and they must have a total area larger than a threshold,Tperson.
Further rules based on aspect ratio and skin color can be added. Once a person is being
tracked, any region that overlaps its bounding box (or alternatively its support map) is
matched to the person. A person is considered to constitute a group of one.

A group consists of one or more people and therefore one or more regions. Groups can
split and merge. When a region is matched to more than one group, those groups are merged
to form a new group. When the regions in a group do not have sufficient proximity or do
not overlap on thex axis, that group is split up. A split usually results in a large group
containingN people dividing into smaller groups that together containN people. However,
regions that contain no people can also split from a group when a person deposits an object,
for example.

The thresholds were set toTfr = 4 frames,Tcc = 30 pixels, andTperson= 500 pixels for
the sequences shown in this paper. Figure 5 shows three frames from a sequence in which
a man and a woman walk toward one another, greet briefly, and then continue. The tracker
successfully tracks them through the sequence. Figure 6 illustrates the processing that is
performed on the last three frames of Fig. 5. Although the man is grouped as a single region
for most of the sequence, in this particular frame background subtraction splits him into
two regions. However, he is correctly tracked as a group consisting of a single person.

Another example sequence that shows three people being tracked as they form groups
and split up again was shown in Fig. 1 with a bounding box shown for each tracked group.
Figure 7 shows the centers of these boxes in every frame overlaid on the empty scene.
The plots in Fig. 8 show how thex and y coordinates of these box centers change over
time. The resolution of this sequence was 320× 240 pixels. In order to obtain a quantita-
tive estimate of tracking accuracy, a bounding box was determined by hand for person 1
for 65 frames after that person had entered the scene. These bounding boxes were treated
as ground-truth and were compared to the tracking system’s estimates. The mean absolute

FIG. 5. Three images from a sequence in which two people walk past one another.
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FIG. 6. Processing of the third frame in Fig. 5. From top left: (i) Background subtraction using chromaticity,
(ii) background subtraction using gradients, (iii) combined background subtraction, (iv) combined background
subtraction after median filtering, (v) bounding boxes for tracked regions and people (person 1 consists of two
regions), and (vi) tracked people’s bounding boxes.

errors in estimating thex coordinates andy coordinates for the bounding box were 1.6 pixels
(standard deviation= 1.4) and 0.7 pixels (standard deviation= 0.7) respectively. This re-
sulted in mean absolute errors for the box center plotted in Fig. 8 of 0.8 pixels for thex coordi-
nate (standard deviation= 0.6) and 0.5 pixels for they coordinate (standard deviation= 0.4).
The maximum absolute errors for any frame were 2.5 and 1.5 pixels, respectively.

The tracking system is also able to detect some interactions with objects. If a person
removes an object or deposits an object in the scene, this will give rise to a new region
that splits from the person. If this region does not have significant motion and is not part
of a person, it is flagged as corresponding to an object that has just been acted upon by the
person. Figures 9 and 10 show examples of detected interactions with objects.

5. MODELING THE FOREGROUND

In order to track people consistently as they enter and leave groups, each person’s ap-
pearance must be modeled. This allows people to be tracked despite the ambiguities that

FIG. 7. The centers of the bounding boxes of the groups tracked in Fig. 1 shown overlaid on the empty scene.



TRACKING GROUPS OF PEOPLE 51

FIG. 8. The coordinates of the bounding box centers of the groups tracked in Fig. 1 plotted over time. (Left)
Centers’x coordinates. (Right) Centers’y coordinates.

arise as a result of occlusion and grouping of people. Therefore, a color model is built and
adapted for each person being tracked. Since people cannot be reliably segmented while
grouped with others, these person models are adapted only while a person is alone, i.e., in
a group of size one.

Color distributions have been effectively modeled for tracking using both color his-
tograms [21] and Gaussian mixture models [23, 27], and these models give similar results.
Both histograms and Gaussian mixtures can be updated adaptively. Gaussian mixtures can
be estimated from color data using an expectation-maximization algorithm. When adapta-
tion is not needed, a mixture can be used to generate a histogram for fast computation of
probabilities. When the number of color samples is small and the number of meaningfully
discriminable colors is large (e.g., true 24-bit pixels acquired using a high-quality camera),
Gaussian mixtures are more appropriate. Conversely, histograms are appropriate with larger
data sets in a coarsely quantized color space. For example, histograms are slightly more
effective than mixture models for modeling skin color using very large numbers of images
taken from the World Wide Web [17]. We have used both histograms and mixture models
effectively.

A histogramHi (x) simply counts the number of occurrences ofx= (r, g, b) within the
mask for personi . It provides a look-up table from which a discrete probability distribution
is obtained as

P(x | i ) = Hi (x)

Ai
, (5)

whereAi is the area of the person mask in pixels. In each frame, such a model can be updated
either cumulatively to model a stationary distribution or, more appropriately, adaptively to
model a nonstationary distribution. Histogram models are adaptively updated by storing the

FIG. 9. A person deposits an object.
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FIG. 10. A person removes an object.

histograms as probability distributions and updating them as

Pt+1(x | i ) = βPt (x | i )+ (1− β)Pnew
t+1 (x | i ), (6)

wherePnew
t+1 is the probability computed using only the new image obtained at timet + 1,

Pt+1 is the updated probability estimate, and 0< β < 1. The sequences in this paper were
processed usingβ = 0.8. A method for updating Gaussian mixture models is given else-
where [23].

Color distributions were estimated in the trichromatic RGB space obtained from the
frame grabber. Each channel was quantized into 16 values (4 bits). This gave a total of 163=
4096 histogram bins. This coarse quantization is easily justified if the camera produces only
4 or 5 true bits per channel.

5.1. Reasoning during Occlusions

While people are in a group there is often extensive occlusion and it is difficult to
accurately segment the people from one another. However, we can still approximate their
positions and obtain a partial depth ordering based on the extent to which each person is
occluded.

Let Ai denote the number of pixels that were in personi ’s mask when that person was
last observed in a group containing no other people. If nothing is known about the depth
ordering of people in a group, the prior probability of a pixel corresponding to thei th person
in the group can be estimated as

P(i ) = Ai∑
j∈G Aj

. (7)

Each person,i , in a group has a color modelP(x | i ), although adaptation of these color
models is suspended while a person is in a group with others because of the lack of a reliable
segmentation. For each personi in a groupG, and for each pixel (x, y) within the group’s
mask, a probabilityP(xx,y | i ) can be obtained usingi ’s color model. Posterior probabilities
can be computed by combining these probabilities with the priors:

P(i | xx,y) = P(xx,y | i )P(i )∑
j∈G P(xx,y | j )P( j )

. (8)

This can easily be implemented using histograms. Each time a groupG of more than one
person is formed or changes its members to form a new group, a “histogram” of posteriors
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FIG. 11. Posterior probabilities for people 1, 2, and 3 respectively in frame 210. (High values are darker.)

is computed for each person in the group. This can be considered to be a generalization to
multiple models of the ratio histogram idea used in [30]. The posteriors can be interpreted
as follows: A high value indicates that a pixel in the group with those color values has a high
probability of corresponding to an unoccluded part of that person. A low, nonzero value
indicates that although the pixel could be due to the person, it is more likely to be a visible
part of another person in the group. The posterior probabilities enable an estimate of the
extent to which each person in the group is unoccluded to be obtained. A visibility index,
vt (i ), is computed for each person,i , in the groupG

vt (i ) =
∑

x,y P(i | xx,y)

Ai
, (9)

where the summation is over those pixels (x, y) in the support map for groupG at time
t . Whenvt (i ) has a low value, personi is largely occluded by other people in the group.
Visibility indices can be used to estimate a depth ordering of the people in the group.

Figure 11 shows the posterior probabilities computed using Eq. (8) for each person in
frame 210 of the sequence in Fig. 1 (the sixth of the images shown). In this case, the
shirts provide good color cues for discrimination. Persons 2 and 3 are both wearing blue
jeans resulting in lower posteriors on thier legs. Figure 12 shows a plot of the visibility
indices between frames 173 and 236 during which time they form a group of three. The
plot correctly indicates that person 1 is heavily occluded in frame 210 while person 3 is the
most visible.

FIG. 12. Visibility indices for frames 173 to 236 of the sequence shown in Fig. 1.
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5.2. Group Bifurcation

When a group of several people splits up to form two or more new groups, the color models
of the persons in the original group are used to determine who belongs to each new group.
Histogram color models are matched using the histogram intersection method proposed
by Swain and Ballard for object recognition [30]. Given a histogram,HG, computed from
a newly created groupG and a histogram,Hi , for personi , a normalized match value
0≤ f (G, i ) ≤ 1 is computed as

f (G, i ) =
∑

x,y min(HG(xx,y), Hi (xx,y))∑
x,y Hi (xx,y)

, (10)

where summations are over those pixels (x, y) in the support map for groupG. People are
allocated to groups so as to maximize the match values. The person’s histogram,Hi , is
used to normalize the match score. Therefore, the intersection match value is increased by
a pixel in an area of the group outside the person only if (i) that pixel has the same color
as a color in the model, and (ii) the number of pixels of that color in the person is less than
the number of pixels of that color in the model [30].

6. DISCUSSION

Background subtraction is low level and relies entirely on local information. As such, it
will never be entirely reliable but should be considered as providing useful information to
intermediate level grouping processes. The scheme described here is quite robust even in
unconstrained outdoor scenes. The use of adaptation is important and even allows tracking
to cope with brief camera motion without complete failure. In addition, since edges are used
in subtraction, this approach makes use of, and indeed favors, clutter in both the scene and
the humans.

There are of course circumstances in which the tracker will fail. If two people are clothed in
a very similar manner, they may be confused if they form a group and subsequently separate.
Although it is possible for a person model to be erroneously initialized and tracked, this is
rare because unless the regions concerned are consistently tracked over several frames, a
person will not be initialized.

The tracking system described here ran successfully using several different camera and
frame-grabber setups. For example, the sequences shown in this paper were captured at
approximately 15 Hz using an inexpensive video camera and frame-grabber that duplicated
and dropped many frames. The system also ran successfully, without the need to alter
any free parameters, on sequences acquired at 60 Hz in 8-bit per channel RGB at the
Keck Laboratory, University of Maryland. This helps demonstrate the robust nature of the
approach. A version of this tracker that uses image processing functions optimized for
MMX technology runs at approximately 8 Hz on a 500-MHz PIII PC at a resolution of
180× 144 pixels.

Future work will further explore learning part-based color models for tracking people.
Patterned garments might also be characterized stably using texture descriptors. Another
focus of future work will be concerned with learning behavior models for person–person
and person–object interactions.
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