
Qiang Zeng,

Golam Kayas, Emil Mohammed, Lannan Luo,
Xiaojiang Du, and Junghwan Rhee

 DSN 2019

HeapTherapy+: Efficient Handling of
(Almost) All Heap Vulnerabilities

Using Targeted Calling-Context Encoding

Trend of Memory Vulnerability Exploitation
• Memory vulnerability exploitation

•  Stack-based
•  Heap-based

• Many effective protection for call stacks
•  Stack canaries
•  Reordering local variables
•  Safe SEH (Structured Exception Handling)

• Heap vulnerability exploitation becomes the trend
•  Heartbleed: heap buffer overread
•  WannaCry: heap buffer overwrite
•  Popular ROP (return oriented programming) attack [1]:
 Heap overflow => overwrite a function pointer => stack pivoting

2

[1] McAfee, “Emerging ‘Stack Pivoting’ Exploits Bypass Common Security”, 2013

3

Victims on Stack Protection
Return address Canaries (/GS flag)
Local variables Reordering variables

SEH frame SafeSEH

“Because the success of stack-based exploits has been reduced
by the numerous security measures, heap-based attacks are now
common” [Ratanaworabhan 2009]

[Ratanaworabhan 2009] Ratanaworabhan, et al.."NOZZLE: A Defense Against Heap-spraying Code
Injection Attacks." USENIX Security. 2009.

[Silvestro 2017] Silvestro, Sam, et al. "FreeGuard: A Faster Secure Heap Allocator.” CCS, 2017.

Types of Heap Vulnerabilities
• Uninitialized read

•  Information leakage; …

4

str	=	(char*)	malloc(128);	
…	//	str	is	not	initialized	
cout	<<	str;	

Types of Heap Vulnerabilities
• Uninitialized read

•  Information leakage; …

• Use-after-free
•  Control-flow hijacking; …

5

(1)	D	*p	=	new	D();	
…	
(2)	delete	p;	
(3)	…	
(4)	p->foo();	//	use-after-free	
	
	

this

		//	buffer	re-allocated	and	used

p

malicious
virtual

function
table

“More than 50% of known attacks targeting
Windows 7 exploit use-after-free” [Zhang 2016]

[Zhang 2016] Zhang, Chao, et al. "VTrust: Regaining Trust on Virtual Calls." NDSS. 2016.

Virtual
function
table

foo()

bar()

Types of Heap Vulnerabilities
• Uninitialized read

•  Information leakage; …

• Use-after-free
•  Control-flow hijacking; …

• Buffer overflow
Ø  Over-write

•  Manipulating data; control-flow hijacking; …
Ø  Over-read

•  Information leakage; …

6

Existing Measures
• Checking every buffer access is great…but expensive

•  SoftBound (handle overflow and use-after-free): 67%
•  AddressSanitizer (handle overflow and use-after-free): 73%
•  MemorySanitizer (handle uninitialized read): 2.5x

• SFI (software fault isolation), CFI (control-flow integrity),
XFI, CPI (code pointer integrity), …
•  Challenges when working with existing shared libs (legacy code)
•  Some (like XFI) are still very expensive

• Our previous work
•  Cruiser [PLDI’11], Kruiser [NDSS’12]: only handle overwrite
•  HeapTherapy [DSN’15]: only handle overwrite and overread

7

A Patching Perspective
• Patching is an indispensable step throughout the life of a

software system; however,
•  153 days on average for delivering a patch [1]

•  Only 65% of vulnerabilities have patches available [2]

•  Fresh patches break systems frequently

• Our goals
•  Handle heap overflow, uninitialized read, and use-after-free
•  Generate patches instantly with zero manual diagnosis efforts
•  Install patches without altering code, i.e., code-less patching
•  A very small overhead

8

[1] S. Frei, “The Known Unknowns,” 2013.
[2] S. frei, “” “End-point security failures, insight gained from secunia psi scans,” 2011.

Hypotheses

9

More generally, for a use-after-free or uninitialized-read
vulnerability, the vulnerable buffers share the same calling
context when they are allocated

Given a heap buffer overflow bug, the vulnerable buffers
share the same calling context when they are allocated

Verifying Hypotheses
10

Memory
Allocator

Program

Heap Buffers

Diagnosis
Engine

Upon
Failure

Calling Context
Encoding

Pathogen
Calling Contexts

Figure 3: The architecture of HeapTherapy.

the pathogen buffers and prevent further failures. The
memory allocator utilizes a highly efficient calling con-
text encoding module to compare the current allocation
calling context with pathogen ones to determine whether
the new buffer should be enhanced.

4.2 Reasoning Pathogen Calling Contexts

1 void login user(int user) {
2 ...
3 char⇤ buf = malloc(256);
4 read next cmd(buf);
5 ...
6 }
7

8 void read next cmd (char⇤ buf) {
9 ...
10 strcpy(buf, getenv(‘‘USERCMD’’));
11 ...
12 }

Figure 4: Pseudo code of a login module with a heap
buffer overflow bug.

login_user

malloc read_next_cmd

strcpy

Figure 5: The calling context tree of the login module.

Given a software bug, there exist only some spe-
cific pathways that can exploit the bug [74, 52]. The
pseudo code shown in Figure 4 is from a login mod-
ule that contains a heap buffer overflow bug [39], and
its calling context tree (CCT) is shown in Figre 5.
The bug can only be exploited under the calling con-
text login user!read next cmd!strcpy. Based

on this insight some previous work tracks write opera-
tions with pathway calling contexts only in order to re-
duce overhead [52].

Resource-centric Targeted Therapy takes one more
step forward. That is, given a heap buffer overflow bug,
a pathway calling context can only overflow buffers with
some specific pathogen calling contexts. In the login
module example, the pathogen calling context can only
be login user!malloc.

clone

start_thread

handle_one_connection

do_handle_one_connection

my_malloc

malloc

thd_prepare_connection do_command

MDL_key::mdl_key_init

stpcpy

Pathogen buffers are allocated.

Pathogen buffers are overflowed.

Figure 6: Part of the calling context tree of MySQL. The
dashed lines indicate omitted functions.

Bugs in complicated software have the same charac-
teristics. For example, Figure 6 illustrates part of the
calling context tree of MySQL containing a heap buffer
overflow [55]. Buffers overrun by the pathway calling
context share the same pathogen calling context as shown
in the figure. The insight is confirmed by all of our 15 test
cases during evaluation.

Our insight about the correlation of pathway and
pathogen calling contexts resonances the work VtPath,
which is built on the insight that the calling context of
one program execution point must follow some valid vir-
tual path to reach that of a later execution point [27].
VtPath detects intrusion if an invalid path has been
followed. In the login module example, the virtual
path is malloc returns, read next cmd starts,
strcppy starts . Attackers have no other virtual paths
to take before they hijack the control flow, which is usu-
ally the goal of a buffer overflow attack itself. It is no-
table that VtPath and HeapTherapy take reverse views,
though, since we aim at going backward to find the
pathogen calling context of an earlier program location.

4.3 Diagnosis Engine
Due to address space layout randomization (ASLR) com-
monly adopted in modern operating systems [10], the

6

Vulnerable buffers are allocated

Vulnerable buffers are exploited

Given this vulnerability, many
different exploits were collected

and replayed

Main Approach

11

Using allocation-time calling context to characterize
vulnerable buffers

1.  When replaying the attack, record the allocation-time
calling context of each buffer. When the offending
operation (e.g., overflow) is detected, output the
allocation-time calling context of the vulnerable buffer

2.  During runtime, if a buffer being allocated has that
allocation-time calling context, enhance it

Challenges
• How to retrieve and compare calling contexts efficiently?

•  Retrieving calling context via stack walking is too expensive
•  ASLR makes the collected RAs useless

• How to bridge offline attack analysis and online defense
generation?

• How to achieve code-less patching?

• How to handle the diverse vulnerabilities in a uniform way?

12

•  Targeted Calling Context Encoding

• Offline Attack Analysis and Patch Generation

• Online Defense Generation

13

Calling Context Encoding
•  Using an integer (or very few integers) to encode the

calling context
•  The integer is updated at each function call and return; using

simple arithmetic operations

•  <3% slowdown; concise representation
•  Wide applications: testing coverage, anomaly detection,

compilation optimization, logging, …

14

PCC
[Bond 2007]

PCCE
[Sumner 2010]

DeltaPath
[Zeng 2014]

Support Object-Oriented ✔ ✗ ✔
Decoding ✗ ✔ ✔
Scalability ✗ ✗ ✔

Example: PCC
• Goal: each unique ID represents a unique calling context

15

1	B()	{		
2  C();		
3  D();		
4	}	
5	
6	C()	{	
7	D();	
8	}	
9	
10	D()	{	
11		Sensitive	API!	//	calling	context?	
12	}	

B

C

D

ID = 13 ID = 3

ID = 0

ID = t * 3 + 2

ID = t * 3 + 3

Answer: Read the variable “ID” to get
the calling context ID

t = ID

t = ID

ID = t * 3 + 7

ID = 2

Targeted Calling Context Encoding
• A set of ideas that can minimize the encoding overhead

• Key insight: When the target functions, whose calling
contexts are of interest, are known, many call sites do no
need to be instrumented
•  E.g., some functions never appear in the calling contexts that lead

to the target functions

•  Target functions in our work:
•  malloc, calloc, realloc, memalign, aligned_alloc

16

17

(a) FCS (full-call-site instrumentation): original PCC encoding
(b) TCS (targeted-call-site): H and I cannot reach the targets T1 and T2
(c) Slim: B, E and G each has only one out-going edge that reaches the targets
(d)  Incremental: F-T1 and F-G-T2 can be distinguished through the target

Encoding overhead
•  Implementation: added an LLVM pass for instrumentation
• Evaluation: SPEC CPU2006 Integer

• Size overhead
•  PCC: 12%
•  Targeted Calling context Encoding: 4.4%
•  2.7x of improvement

• Speed overhead
•  PCC: 2.4%
•  Targeted Calling Context Encoding: 0.4%
•  6x of speed up

18

•  Targeted Calling Context Encoding

• Offline Attack Analysis and Patch Generation

• Online Defense Generation

19

20

One-time program
instrumentation Patch generation

 Patched program execution

Program
Instrumentation Tool

Instrumented
program

Online Defense
Generator

Program

Attack inputs

Configuration file

Patches

Offline Patch
Generator

Fig. 1. System architecture.

defeat attacks that exploit V . We consider the three frequently
exploited heap vulnerability types described in Section I.

But our system differs from conventional patch generation
in the following aspects. (1) Instead of relying on lengthy man-
ual investigation, patches can be generated instantly without
human intervention. (2) Rather than updating the program P
to fix vulnerabilities, patches are written into a configuration
file C to take effect, without introducing new bugs.

B. System Architecture

As shown in Figure 1, the system consists of the fol-
lowing components: (1) A Program Instrumentation Tool:
it builds the calling context encoding capability into the
program (Section IV). Program instrumentation is an one-time
effort. Because of the simplicity of the instrumentation, its
correctness can be verified automatically. The instrumented
program is then used for both offline patch generation and the
online system. (2) An Offline Patch Generator: it automatically
generates the patch by replaying the attack (Section V). (3) An
Online Defense Generator: it is a shared library that (a) loads
the patches from the configuration file C, and (b) intercepts
buffer allocation operations for recognizing vulnerable buffers
and generate defenses online (Section VI).

C. Calling-Context Sensitive Patches

In order to generate a patch P based on attack analysis, it
is critical to extract some invariant among attack instances.
Such invariant then can be used to design protection against
future attacks that also exploit V .

Our observation is that attacks that exploit V usually share
some attack-time calling context (e.g., the sequence of active
function calls that lead to a buffer overflow due to a memcpy
call). If we trace the program execution backward, these
vulnerable buffers should share the allocation-time calling
context, which we call a vulnerable calling context and can
be used as an invariant to generate the patch P .

IV. TARGETED CALLING CONTEXT ENCODING

Simple call stack walking for retrieving calling contexts
would incur a large overhead, especially for programs with
intensive heap allocations [30]. There exist several efficient
calling context encoding techniques, such as [30]–[32]. We
propose targeted calling context encoding, which is a suite
of algorithms that can be used to optimize these encoding
techniques. The insight is that when the target functions,
whose calling contexts are of interest, are known, many call
sites do not need to be instrumented and thus the overhead
can be significantly reduced. Specifically, if some functions
never appear in the calling contexts that lead to the target
functions, they do not need to be instrumented (Section IV-A);
moreover, if one function has only one call site that can reach
the target function, then its instrumentation can also be pruned
(Sections IV-B and IV-C).

While we believe the optimization algorithms can benefit
other encoding techniques [31], [32], to make the discussion
concrete (and based on our choice of the encoding technique
for heap patching), we use Probabilistic Calling Context
(PCC) [30] to demonstrate the application of the proposed
optimizations. According to PCC, at the prologue of each
function, the current calling context ID (CCID), which is
stored in a thread-local integer variable V , is read into a
local variable t; right before each call site, V is updated as
V = 3 ⇤ t + c, where c is a constant integer unique for each
call site.3 This way, V continuously stores the current CCID.
Hence, the current CCID can be obtained conveniently by
reading V . With PCC, however, it may happen that multiple
calling contexts obtain the same encoding due to hash colli-
sions. It is shown practically and theoretically that the chance
of hash collision is very low [30]. It is worth noting that a hash
collision in our system means that a non-vulnerable buffer may
be recognized as a vulnerable buffer and get enhanced. Any
of our enhancements do not change the program logic, so a
hash collision can cause unnecessary overhead, but does not
affect the correctness of our system.

We call the original encoding algorithm that take all the
call sites into consideration as Full-Call-Site (FCS) instru-
mentation. The three famous encoding algorithms, PCC [30],
PCCE [31] and DeltaPath [32] all enforce FCS. Figure 2(a)
shows that all the call sites in those red nodes are instrumented,
and T1 and T2 are the target functions. The less call sites are
instrumented, the smaller overhead is incurred.

A. Targeted-Call-Site (TCS) Optimization

FCS blindly instruments all the call sites in a program. In
practice, very often users are only interested in the calling
contexts that end at one of a specific set of target functions,
such as security-sensitive system calls and critical transaction
calls. In our case, we are only interested in calling con-
texts when the allocation APIs (such as malloc, calloc,
calloc, memalign, aligned_alloc) are invoked. It is

3The encoding in PCCE [31] and DeltaPath [32] basically adopts V = t+c,
where c is calculated according to their encoding algorithms.

4

•  Accessibility-bit (A-bit): whether the byte can be accessed
•  If a buffer has been free-ed, all its A-bits are 0
•  Each buffer is surrounded by two red zones (16B each), whose A-bits are 0

•  Validity-bit (V-bit): whether the bit is initialized
•  When a fresh buffer is malloc-ed, all it V-bits are 0

•  Each buffer’s alloc-API and CCID are recorded

21
Byte1 Byte2 ………….. Byten

Application
Memory Byte2

Shadow
Information

Shadow
Information ………….. Shadow

Information
Shadow
Memory

Shadow
Information

1
1 1 1 1 1 1 1 1

A bit
 V bits

0
0 0 0 0 0 0 0 0

A bit
 V bits

Fig. 3. Shadow memory.

1 typedef struct {

uint32_t i;

uint8_t c;

} A;

5 A y, *p = (A *) malloc(sizeof(A));

p->i = 0; p->c = ’f’;

y = *p;

Fig. 4. Legal uninitialized read due to padding.

the propagation of V-bits when data copy occurs (e.g., when a
word is read from memory to a register); for every byte of the
memory location, an Accessibility bit (A-bit) is maintained to
indicate whether the memory location can be accessed.

When a heap buffer is allocated, the returned memory is
marked as accessible but invalid. Each buffer is surrounded
by a pair of red zones (16 bytes each), which are marked
as inaccessible. When a heap buffer is free-ed, its memory
is set as inaccessible. In addition, whenever a heap buffer is
allocated, the current calling context ID (CCID) is recorded
and associated with the buffer.
(1) Detecting overflows: A buffer overflow will access the
inaccessible red zone appended to the buffer and get detected.
(2) Detecting use after free: A free-ed buffer is set as
inaccessible and then added to a FIFO queue of freed blocks.
Thus, the memory is not immediately made available for reuse.
Any attempts to access any of the blocks in the queue can be
detected. The maximum total size of the buffers in the queue is
set as 2GB by default, which is large enough for the exploits
we investigated, and can be customized. In Section IX, we
discuss how to handle it if the quota is insufficient.
(3) Detecting uninitialized read: To detect uninitialized read,
an attempt is to report any access to uninitialized data, but this
will lead to many false positives. For instance, given the code
snippet in Figure 4, most of the compilers will round the size
of A to 8 bytes; so only 5 bytes of the heap buffer is initialized
(and the V-bits for the remaining 3 bytes are zero), while the
compiler typically generates code to copy all 8 bytes for y =

*p, which would cause false positives due to accessing the 3
bytes whose V-bits are zero. To avoid false positives due to
padding, we check the V-bit of a value only when it is used to
decide the control flow (e.g., jnz), used as a memory address,
or used in a system call (as the kernel behavior is not tracked).
As every bit of the program has a V-bit, bit-precision detection
of uninitialized read is achieved. Moreover, origin tracking is

 <API, CCID, Vulnerability>

 <memalign, 1854955292, OVERFLOW>
 <calloc, 8643565443, USE-AFTER-FREE>
 <malloc, 2598251483, UNINITIALIZED-READ>
 … ...

Read by Online
Defense Generator

Key Value

 <MEMALIGN, 1854955292>
 <CALLOC, 8643565443>
 <MALLOC, 2598251483>

…..

(001)2

(010)2

(100)2

… …

Configuration file

Hash table

Fig. 5. Patches read into a hash table.

used to track the use of invalid data back to the uninitialized
data (such as a heap buffer) when a warning is raised, which
allows us to retrieve the allocation-time CCID associated with
the vulnerable buffer.

When an attack is detected, the patch is generated in
the form of h FUN, CCID, Ti, where FUN is the func-
tion used to request the heap buffer (such as malloc,
memalign), CCID is an integer representing the allocation-
time calling context ID of the vulnerable buffer, and T is a
three-bit integer representing the vulnerability type (the three
bits are used to indicate OVERFLOW, USE-AFTER-FREE,
UNINITIALIZED-READ, respectively). Example patches are
shown in the upper graph in Figure 5.
How to handle realloc: If the new size is smaller than the
original size, the cut-off region is marked as inaccessible. If
the new size is larger, the added region is set as accessible but
invalid. The allocation-time CCID associated with the buffer
is also updated with the value upon the realloc invocation.
How to handle multiple vulnerabilities: An attack input may
exploit multiple vulnerabilities. For example, the Heartbleed
attack exploits both uninitialized read and overread. In order to
handle the case that an attack exploits multiple vulnerabilities,
we resume the program execution upon warnings. Plus, once
the V bits for a value have been checked, they are then set to
valid; this avoids a large number of chained warnings. Finally,
a script is used to process the many warnings according to
the origin (i.e., the vulnerable buffer) of those warnings and
generate patches.

VI. CODE-LESS PATCHING AND ONLINE DEFENSES

When the patched program is started, as shown in Figure 5,
the Online Defense Generator library has an initialization
function4 that reads patches from the configuration file and
stores them into a hash table, where the key of each entry
is h ALLOCATION_FUNCTION, CCIDi and the value is the
vulnerability type(s) and parameters, if any, for generating
online defenses. Note once the hash table is initialized, its
memory pages are set as read only.

The Online Defense Generator library intercepts all heap
memory allocation operations. Whenever a heap buffer is
allocated, the name of the allocation function along with the

4
__attribute__((constructor)) is used to declare the function.

6

(1) Detect overflow: an overflow will touch the inaccessible red zone
(2) Detect use-after-free: a free-ed buffer is set as inaccessible and
then added to a queue to delay the space reuse
(3) Detect uninitialized read: more complex, but mainly relies on V-bits

Patches as a configuration file
• Each patch is simply a tuple
 <alloc-API, CCID, vul-type>
• Code-less patching: to “install” a patch, just add one line

in the config file

22

Byte1 Byte2 ………….. Byten
Application

Memory Byte2

Shadow
Information

Shadow
Information ………….. Shadow

Information
Shadow
Memory

Shadow
Information

1
1 1 1 1 1 1 1 1

A bit
 V bits

0
0 0 0 0 0 0 0 0

A bit
 V bits

Fig. 3. Shadow memory.

1 typedef struct {

uint32_t i;

uint8_t c;

} A;

5 A y, *p = (A *) malloc(sizeof(A));

p->i = 0; p->c = ’f’;

y = *p;

Fig. 4. Legal uninitialized read due to padding.

the propagation of V-bits when data copy occurs (e.g., when a
word is read from memory to a register); for every byte of the
memory location, an Accessibility bit (A-bit) is maintained to
indicate whether the memory location can be accessed.

When a heap buffer is allocated, the returned memory is
marked as accessible but invalid. Each buffer is surrounded
by a pair of red zones (16 bytes each), which are marked
as inaccessible. When a heap buffer is free-ed, its memory
is set as inaccessible. In addition, whenever a heap buffer is
allocated, the current calling context ID (CCID) is recorded
and associated with the buffer.
(1) Detecting overflows: A buffer overflow will access the
inaccessible red zone appended to the buffer and get detected.
(2) Detecting use after free: A free-ed buffer is set as
inaccessible and then added to a FIFO queue of freed blocks.
Thus, the memory is not immediately made available for reuse.
Any attempts to access any of the blocks in the queue can be
detected. The maximum total size of the buffers in the queue is
set as 2GB by default, which is large enough for the exploits
we investigated, and can be customized. In Section IX, we
discuss how to handle it if the quota is insufficient.
(3) Detecting uninitialized read: To detect uninitialized read,
an attempt is to report any access to uninitialized data, but this
will lead to many false positives. For instance, given the code
snippet in Figure 4, most of the compilers will round the size
of A to 8 bytes; so only 5 bytes of the heap buffer is initialized
(and the V-bits for the remaining 3 bytes are zero), while the
compiler typically generates code to copy all 8 bytes for y =

*p, which would cause false positives due to accessing the 3
bytes whose V-bits are zero. To avoid false positives due to
padding, we check the V-bit of a value only when it is used to
decide the control flow (e.g., jnz), used as a memory address,
or used in a system call (as the kernel behavior is not tracked).
As every bit of the program has a V-bit, bit-precision detection
of uninitialized read is achieved. Moreover, origin tracking is

 <API, CCID, Vulnerability>

 <memalign, 1854955292, OVERFLOW>
 <calloc, 8643565443, USE-AFTER-FREE>
 <malloc, 2598251483, UNINITIALIZED-READ>
 … ...

Read by Online
Defense Generator

Key Value

 <MEMALIGN, 1854955292>
 <CALLOC, 8643565443>
 <MALLOC, 2598251483>

…..

(001)2

(010)2

(100)2

… …

Configuration file

Hash table

Fig. 5. Patches read into a hash table.

used to track the use of invalid data back to the uninitialized
data (such as a heap buffer) when a warning is raised, which
allows us to retrieve the allocation-time CCID associated with
the vulnerable buffer.

When an attack is detected, the patch is generated in
the form of h FUN, CCID, Ti, where FUN is the func-
tion used to request the heap buffer (such as malloc,
memalign), CCID is an integer representing the allocation-
time calling context ID of the vulnerable buffer, and T is a
three-bit integer representing the vulnerability type (the three
bits are used to indicate OVERFLOW, USE-AFTER-FREE,
UNINITIALIZED-READ, respectively). Example patches are
shown in the upper graph in Figure 5.
How to handle realloc: If the new size is smaller than the
original size, the cut-off region is marked as inaccessible. If
the new size is larger, the added region is set as accessible but
invalid. The allocation-time CCID associated with the buffer
is also updated with the value upon the realloc invocation.
How to handle multiple vulnerabilities: An attack input may
exploit multiple vulnerabilities. For example, the Heartbleed
attack exploits both uninitialized read and overread. In order to
handle the case that an attack exploits multiple vulnerabilities,
we resume the program execution upon warnings. Plus, once
the V bits for a value have been checked, they are then set to
valid; this avoids a large number of chained warnings. Finally,
a script is used to process the many warnings according to
the origin (i.e., the vulnerable buffer) of those warnings and
generate patches.

VI. CODE-LESS PATCHING AND ONLINE DEFENSES

When the patched program is started, as shown in Figure 5,
the Online Defense Generator library has an initialization
function4 that reads patches from the configuration file and
stores them into a hash table, where the key of each entry
is h ALLOCATION_FUNCTION, CCIDi and the value is the
vulnerability type(s) and parameters, if any, for generating
online defenses. Note once the hash table is initialized, its
memory pages are set as read only.

The Online Defense Generator library intercepts all heap
memory allocation operations. Whenever a heap buffer is
allocated, the name of the allocation function along with the

4
__attribute__((constructor)) is used to declare the function.

6

•  Targeted Calling Context Encoding

• Offline Attack Analysis and Patch Generation

• Online Defense Generation

23

Patches read into a hash table

24

Byte1 Byte2 ………….. Byten
Application

Memory Byte2

Shadow
Information

Shadow
Information ………….. Shadow

Information
Shadow
Memory

Shadow
Information

1
1 1 1 1 1 1 1 1

A bit
 V bits

0
0 0 0 0 0 0 0 0

A bit
 V bits

Fig. 3. Shadow memory.

1 typedef struct {

uint32_t i;

uint8_t c;

} A;

5 A y, *p = (A *) malloc(sizeof(A));

p->i = 0; p->c = ’f’;

y = *p;

Fig. 4. Legal uninitialized read due to padding.

the propagation of V-bits when data copy occurs (e.g., when a
word is read from memory to a register); for every byte of the
memory location, an Accessibility bit (A-bit) is maintained to
indicate whether the memory location can be accessed.

When a heap buffer is allocated, the returned memory is
marked as accessible but invalid. Each buffer is surrounded
by a pair of red zones (16 bytes each), which are marked
as inaccessible. When a heap buffer is free-ed, its memory
is set as inaccessible. In addition, whenever a heap buffer is
allocated, the current calling context ID (CCID) is recorded
and associated with the buffer.
(1) Detecting overflows: A buffer overflow will access the
inaccessible red zone appended to the buffer and get detected.
(2) Detecting use after free: A free-ed buffer is set as
inaccessible and then added to a FIFO queue of freed blocks.
Thus, the memory is not immediately made available for reuse.
Any attempts to access any of the blocks in the queue can be
detected. The maximum total size of the buffers in the queue is
set as 2GB by default, which is large enough for the exploits
we investigated, and can be customized. In Section IX, we
discuss how to handle it if the quota is insufficient.
(3) Detecting uninitialized read: To detect uninitialized read,
an attempt is to report any access to uninitialized data, but this
will lead to many false positives. For instance, given the code
snippet in Figure 4, most of the compilers will round the size
of A to 8 bytes; so only 5 bytes of the heap buffer is initialized
(and the V-bits for the remaining 3 bytes are zero), while the
compiler typically generates code to copy all 8 bytes for y =

*p, which would cause false positives due to accessing the 3
bytes whose V-bits are zero. To avoid false positives due to
padding, we check the V-bit of a value only when it is used to
decide the control flow (e.g., jnz), used as a memory address,
or used in a system call (as the kernel behavior is not tracked).
As every bit of the program has a V-bit, bit-precision detection
of uninitialized read is achieved. Moreover, origin tracking is

 <API, CCID, Vulnerability>

 <memalign, 1854955292, OVERFLOW>
 <calloc, 8643565443, USE-AFTER-FREE>
 <malloc, 2598251483, UNINITIALIZED-READ>
 … ...

Read by Online
Defense Generator

Key Value

 <MEMALIGN, 1854955292>
 <CALLOC, 8643565443>
 <MALLOC, 2598251483>

…..

(001)2

(010)2

(100)2

… …

Configuration file

Hash table

Fig. 5. Patches read into a hash table.

used to track the use of invalid data back to the uninitialized
data (such as a heap buffer) when a warning is raised, which
allows us to retrieve the allocation-time CCID associated with
the vulnerable buffer.

When an attack is detected, the patch is generated in
the form of h FUN, CCID, Ti, where FUN is the func-
tion used to request the heap buffer (such as malloc,
memalign), CCID is an integer representing the allocation-
time calling context ID of the vulnerable buffer, and T is a
three-bit integer representing the vulnerability type (the three
bits are used to indicate OVERFLOW, USE-AFTER-FREE,
UNINITIALIZED-READ, respectively). Example patches are
shown in the upper graph in Figure 5.
How to handle realloc: If the new size is smaller than the
original size, the cut-off region is marked as inaccessible. If
the new size is larger, the added region is set as accessible but
invalid. The allocation-time CCID associated with the buffer
is also updated with the value upon the realloc invocation.
How to handle multiple vulnerabilities: An attack input may
exploit multiple vulnerabilities. For example, the Heartbleed
attack exploits both uninitialized read and overread. In order to
handle the case that an attack exploits multiple vulnerabilities,
we resume the program execution upon warnings. Plus, once
the V bits for a value have been checked, they are then set to
valid; this avoids a large number of chained warnings. Finally,
a script is used to process the many warnings according to
the origin (i.e., the vulnerable buffer) of those warnings and
generate patches.

VI. CODE-LESS PATCHING AND ONLINE DEFENSES

When the patched program is started, as shown in Figure 5,
the Online Defense Generator library has an initialization
function4 that reads patches from the configuration file and
stores them into a hash table, where the key of each entry
is h ALLOCATION_FUNCTION, CCIDi and the value is the
vulnerability type(s) and parameters, if any, for generating
online defenses. Note once the hash table is initialized, its
memory pages are set as read only.

The Online Defense Generator library intercepts all heap
memory allocation operations. Whenever a heap buffer is
allocated, the name of the allocation function along with the

4
__attribute__((constructor)) is used to declare the function.

6

A shared lib

Vulnerability Handling
• Handle overflow

•  Append a guard page to each vulnerable buffer

• Handle use-after-free
•  Delay the deallocation of the free-ed vulnerable buffers

• Handle uninitialized read
•  Initialize the newly allocated vulnerable buffer with zeros

25

26

Evaluation
• Effectiveness

• Efficiency
•  SPEC CPU2006: 4.3% (zero patch), 4.7% (one patch), 5.2% (five)

•  1.9% due to malloc/free hooking, 2% due to buffer metadata maintaining
•  The 3.9% can be eliminated if our system is integrated into the allocator

•  MySQL (w/t Heartbleed): mysql-stress-test.pl; no observable overhead
•  Nginx (w/t Heartbleed): AB; throughput overhead 4.2%

27

free call

Align bit is set?Get alignment
information

Get original
buffer address

Invoke original free

End

Push the buffer into
the queue of freed

blocks

Overflow bit is set?Turn the guard page
into a normal page

Yes

Yes

No

No

Use-after-free
bit is set?

No

Yes

Fig. 7. Handling free().

memalign. Whenever there is use after free, upon being freed
the buffer is put into the freed-blocks queue to defer the reuse
of these buffers.
How to handle free() calls? A particular advantage of
our system is that it supports the deployment of heap patches
without modifying the underlying allocator. It works solely by
intercepting the memory allocation calls. On the other hand,
it complicates the handling of freeing buffers.

As shown in Figure 7, when free(p) is invoked the
Online Defense Generator intercepts the call and handles it
as follows. (1) If the Overflow bit in the metadata word is set,
the location information of the guard page is retrieved and the
guard page is set as accessible using mprotect. (2) Based on
the user buffer address p, the initial address of the buffer pi is
calculated. Specifically, if the buffer was not allocated using
memalign, pi = p - sizeof(void*); otherwise, the
alignment size A is retrieved and pi = p - A. (3) If the
Use-after-Free bit is set, the block is put into the queue of
the freed blocks; otherwise, the buffer is released using the
original free API of the underlying allocator.

VII. OTHER IMPLEMENTATION DETAILS

Program Instrumentation Tool. We add a pass into LLVM,
which performs the call graph analysis to determine the
set of call sites to be instrumented and then instruments
them. This implementation has the limitation of requiring the
program source code to be available. Given the simplicity of

TABLE II
VULNERABLE PROGRAMS USED IN THE EVALUATION. UR AND RAF STAND

FOR UNINITIALIZED READ AND USE AFTER FREE, RESPECTIVELY.

Program Vulnerability Reference
Heartbleed UR & Overflow CVE-2014-0160

bc-1.06 Overflow Bugbench [57]
GhostXPS 9.21 UR CVE-2017-9740
optipng-0.6.4 UaF CVE-2015-7801

tiff-4.0.8 Overflow CVE-2017-9935
wavpack-5.1.0 UaF CVE-2018-7253
libming-0.4.8 Overflow CVE-2018-7877

SAMATE Dataset Variety 23 heap bugs [58]

the analysis and instrumentation, we suppose a binary-only
implementation path (e.g., via Dyninst [56]) is viable.

Offline Patch Generator. This component is built on the basis
of Valgrind [54]. We reuse its shadow memory functionality
and modify the tool to handle allocation and deallocation.
Significant effort has been saved by making use of Valgrind,
which in the meanwhile is a mature dynamic analysis tool.
The implementation over Valgrind thus benefits us to analyze
various complex real-world programs successfully.

Online Defense Generator. It is implemented as a shared
library, which reads the patches in the configuration file to
the hash table. Once the initialization is done, the hash table
memory pages are set as read-only. The library also interposes
the buffer allocation calls (such as malloc and free) to
enforce the runtime protection. Note that malloc and free

are usually implemented in a shared library, typically libc.
Thus, as long as our shared library (which also implements
malloc and free) is loaded before libc, calls to these
functions will be dispatched to our library. In Linux, by spec-
ifying our shared library during compilation using LDLIBS+=
(or loading it using LD_PRELOAD), we can ensure it is loaded
before libc. Our implementation of malloc and free,
in addition to enforcing the protection, invokes libc APIs to
perform the real allocation/deallocation. So it does not change
the underlying heap allocator or rely on its internals.

VIII. EVALUATION

We have evaluated HEAPTHERAPY+ in terms of both
effectiveness and efficiency. We not only evaluate it on the
SPEC CPU2006 benchmarks and many vulnerable programs,
but also run the system with real-world service programs. Our
experiments use a machine with a 2.8GHZ CPU, 16G RAM
running 16.04 Ubuntu and Linux Kernel 4.10.

A. Effectiveness

To evaluate the effectiveness of our system HEAPTHER-
APY+, we run it on a series of programs, as shown in Table II,
which contain a variety of heap vulnerabilities. We aim to
evaluate (1) whether the Offline Patch Generator can correctly
determine the vulnerability type and generate patches; and (2)

8

Contribution and Limitations
•  The first work that can patch all the following heap vulnerabilities without

manual analysis effort
•  Overflow, use after free, uninitialized read

•  Prominent features:
•  Code-less patching
•  Very small overhead (several percentages)
•  You can still use your favorite heap allocator

•  A showcase how heavyweight offline analysis can be seamlessly
combined with lightweight online defenses

•  Targeted calling context encoding: 6x speed up

•  Limitations
•  Cannot handle some vulnerabilities: e.g., an overflow within a struct
•  Overflow leads to DoS: padding may be considered, as used in HeapTherapy
•  Re-compilation needed: binary instrumentation is possible

28

THANKS!
Q&A

Qiang Zeng (zeng1@cse.sc.edu)

30

free call

Align bit is set?Get alignment
information

Get original
buffer address

Invoke original free

End

Push the buffer into
the queue of freed

blocks

Overflow bit is set?Turn the guard page
into a normal page

Yes

Yes

No

No

Use-after-free
bit is set?

No

Yes

Fig. 7. Handling free().

memalign. Whenever there is use after free, upon being freed
the buffer is put into the freed-blocks queue to defer the reuse
of these buffers.
How to handle free() calls? A particular advantage of
our system is that it supports the deployment of heap patches
without modifying the underlying allocator. It works solely by
intercepting the memory allocation calls. On the other hand,
it complicates the handling of freeing buffers.

As shown in Figure 7, when free(p) is invoked the
Online Defense Generator intercepts the call and handles it
as follows. (1) If the Overflow bit in the metadata word is set,
the location information of the guard page is retrieved and the
guard page is set as accessible using mprotect. (2) Based on
the user buffer address p, the initial address of the buffer pi is
calculated. Specifically, if the buffer was not allocated using
memalign, pi = p - sizeof(void*); otherwise, the
alignment size A is retrieved and pi = p - A. (3) If the
Use-after-Free bit is set, the block is put into the queue of
the freed blocks; otherwise, the buffer is released using the
original free API of the underlying allocator.

VII. OTHER IMPLEMENTATION DETAILS

Program Instrumentation Tool. We add a pass into LLVM,
which performs the call graph analysis to determine the
set of call sites to be instrumented and then instruments
them. This implementation has the limitation of requiring the
program source code to be available. Given the simplicity of

TABLE II
VULNERABLE PROGRAMS USED IN THE EVALUATION. UR AND RAF STAND

FOR UNINITIALIZED READ AND USE AFTER FREE, RESPECTIVELY.

Program Vulnerability Reference
Heartbleed UR & Overflow CVE-2014-0160

bc-1.06 Overflow Bugbench [57]
GhostXPS 9.21 UR CVE-2017-9740
optipng-0.6.4 UaF CVE-2015-7801

tiff-4.0.8 Overflow CVE-2017-9935
wavpack-5.1.0 UaF CVE-2018-7253
libming-0.4.8 Overflow CVE-2018-7877

SAMATE Dataset Variety 23 heap bugs [58]

the analysis and instrumentation, we suppose a binary-only
implementation path (e.g., via Dyninst [56]) is viable.

Offline Patch Generator. This component is built on the basis
of Valgrind [54]. We reuse its shadow memory functionality
and modify the tool to handle allocation and deallocation.
Significant effort has been saved by making use of Valgrind,
which in the meanwhile is a mature dynamic analysis tool.
The implementation over Valgrind thus benefits us to analyze
various complex real-world programs successfully.

Online Defense Generator. It is implemented as a shared
library, which reads the patches in the configuration file to
the hash table. Once the initialization is done, the hash table
memory pages are set as read-only. The library also interposes
the buffer allocation calls (such as malloc and free) to
enforce the runtime protection. Note that malloc and free

are usually implemented in a shared library, typically libc.
Thus, as long as our shared library (which also implements
malloc and free) is loaded before libc, calls to these
functions will be dispatched to our library. In Linux, by spec-
ifying our shared library during compilation using LDLIBS+=
(or loading it using LD_PRELOAD), we can ensure it is loaded
before libc. Our implementation of malloc and free,
in addition to enforcing the protection, invokes libc APIs to
perform the real allocation/deallocation. So it does not change
the underlying heap allocator or rely on its internals.

VIII. EVALUATION

We have evaluated HEAPTHERAPY+ in terms of both
effectiveness and efficiency. We not only evaluate it on the
SPEC CPU2006 benchmarks and many vulnerable programs,
but also run the system with real-world service programs. Our
experiments use a machine with a 2.8GHZ CPU, 16G RAM
running 16.04 Ubuntu and Linux Kernel 4.10.

A. Effectiveness

To evaluate the effectiveness of our system HEAPTHER-
APY+, we run it on a series of programs, as shown in Table II,
which contain a variety of heap vulnerabilities. We aim to
evaluate (1) whether the Offline Patch Generator can correctly
determine the vulnerability type and generate patches; and (2)

8

