HeapTherapy+: Efficient Handling of
(Almost) All Heap Vulnerabilities
Using Targeted Calling-Context Encoding

Qiang Zeng,
Golam Kayas, Emil Mohammed, Lannan Luo,
Xlaojiang Du, and Junghwan Rhee
DSN 2019

NEC Lahoratories
America

Relentless passion for innovation

2
Trend of Memory Vulnerability Exploitation

- Memory vulnerability exploitation
- Stack-based
- Heap-based

- Many effective protection for call stacks
- Stack canaries

- Reordering local variables
- Safe SEH (Structured Exception Handling)

- Heap vulnerability exploitation becomes the trend
- Heartbleed: heap buffer overread
- WannaCry: heap buffer overwrite
- Popular ROP (return oriented programming) attack [11:
Heap overflow => overwrite a function pointer => stack pivoting

[1] McAfee, “Emerging ‘Stack Pivoting’ Exploits Bypass Common Security”, 2013

“Because the success of stack-based exploits has been reduced
by the numerous security measures, heap-based attacks are now
common” [Ratanaworabhan 2009]

[Ratanaworabhan 2009] Ratanaworabhan, et al.."NOZZLE: A Defense Against Heap-spraying Code
Injection Attacks." USENIX Security. 20009.

T
Types of Heap Vulnerabilities

- Uninitialized read str = (char*) malloc(128);

- Information leakage; // str is not initialized
cout << str;

Types of Heap Vulnerabilities

- Uninitialized read (1) D *p = new D();

- Information leakage; ... (2) delete p;

- Use-after-free (3) ..// buffer re-allocated and used
- Control-flow hijacking; ... (4) p->foo(); // use-after-free

Virtual
function
table

foo()

“More than 50% of known attacks targeting bar()
Windows 7 exploit use-after-free” [zhang 2016]

malicious
virtual
function

[Zhang 2016] Zhang, Chao, et al. "VTrust: Regaining Trust on Virtual Calls." NDSS. 2016. table

T
Types of Heap Vulnerabilities

- Uninitialized read
- Information leakage; ...

- Use-after-free
- Control-flow hijacking; ...

- Buffer overflow
» Qver-write
- Manipulating data; control-flow hijacking; ...

» Over-read
- Information leakage,; ...

Existing Measures

Checking every buffer access is great...but expensive
SoftBound (handle overflow and use-after-free): 67%
AddressSanitizer (handle overflow and use-after-free): 73%
MemorySanitizer (handle uninitialized read): 2.5x

SFI (software fault isolation), CFI (control-flow integrity),
XFI, CPI (code pointer integrity), ...
Challenges when working with existing shared libs (legacy code)
Some (like XF1) are still very expensive

Our previous work
Cruiser [PLDI'11], Kruiser [NDSS’12]: only handle overwrite
HeapTherapy [DSN’15]: only handle overwrite and overread

T
A Patching Perspective

- Patching is an indispensable step throughout the life of a
software system; however,

- 153 days on average for delivering a patch [1]
- Only 65% of vulnerabilities have patches available [2]

- Fresh patches break systems frequently

- Our goals
- Handle heap overflow, uninitialized read, and use-after-free

- Generate patches instantly with zero manual diagnosis efforts
- Install patches without altering code, i.e., code-less patching

- A very small overhead

[1] S. Frei, “The Known Unknowns,” 2013.
[2] S. frei, “ “End-point security failures, insight gained from secunia psi scans,” 2011.

Hypotheses

Given a heap buffer overflow bug, the vulnerable buffers
share the same calling context when they are allocated

More generally, for a use-after-free or uninitialized-read
vulnerability, the vulnerable buffers share the same calling

context when they are allocated

Verifying Hypotheses

{@ Given this vulnerability, many

A different exploits were collected

@thread and replayed

handle_one_connection }

L

— o — — —
P —

do_handle _one_connection

do_command
~
~N
~

MDL_key::de_k@

)

| Vulnerable buffers are allocated

Vulnerable buffers are exploited

Main Approach

Using allocation-time calling context to characterize
vulnerable buffers

1. When replaying the attack, record the allocation-time
calling context of each buffer. When the offending
operation (e.g., overflow) is detected, output the
allocation-time calling context of the vulnerable buffer

2. During runtime, if a buffer being allocated has that
allocation-time calling context, enhance it

2
Challenges

- How to retrieve and compare calling contexts efficiently?
- Retrieving calling context via stack walking is too expensive
- ASLR makes the collected RAs useless

- How to bridge offline attack analysis and online defense
generation?

- How to achieve code-less patching?

- How to handle the diverse vulnerabilities in a uniform way?

- Targeted Calling Context Encoding

- Offline Attack Analysis and Patch Generation

- Online Defense Generation

Calling Context Encoding

Using an integer (or very few integers) to encode the
calling context

The integer is updated at each function call and return; using
simple arithmetic operations

<3% slowdown; concise representation

Wide applications: testing coverage, anomaly detection,
compilation optimization, logging, ...

PCC PCCE DeltaPath
[Bond 2007] | [Sumner 2010] [Zeng 2014]
Support Object-Oriented

Decoding X (V4 4
Scalability X X v

Example: PCC

- Goal: each unique ID represents a unique calling context

Emm— D=0
80 T L

C();
D();
}

c) 1

D();
}

10 D() {
11 Sensitive API! // calling context?
12 }

VOO NOUVTDE,WNER

Read the variable “ID” to get

the calling context ID

6
Targeted Calling Context Encoding

- A set of ideas that can minimize the encoding overhead

- Key insight: When the target functions, whose calling
contexts are of interest, are known, many call sites do no
need to be instrumented

- E.g., some functions never appear in the calling contexts that lead
to the target functions

- Target functions in our work:
- malloc, calloc, realloc, memalign, aligned_alloc

(a) FCS

FCS (full-call-site instrumentation): original PCC encoding
TCS (targeted-call-site): H and | cannot reach the targets T1 and T2
Slim: B, E and G each has only one out-going edge that reaches the targets

(a
(b
(c
(d) Incremental: F-T, and F-G-T, can be distinguished through the target

SN = N N

Encoding overhead

- Implementation: added an LLVM pass for instrumentation
- Evaluation: SPEC CPU2006 Integer

- Size overhead
- PCC: 12%
- Targeted Calling context Encoding: 4.4%
- 2.7x of improvement

- Speed overhead

- PCC: 2.4%
- Targeted Calling Context Encoding: 0.4%

- 6x of speed up

- Targeted Calling Context Encoding

- Offline Attack Analysis and Patch Generation

- Online Defense Generation

One-time program
instrumentation

Y
: Instrumented
. program

Application

Memory Byte, Byte, Byte, Byte,

Shadow Shadow Shadow Shadow Shadow

Memory | Information | Information | Information Information
A bit A bit (0]

v bits{I A A a2 a[1] 1] v bitsLO[O] 0] 0] 0 0] O] 0]
Accessibility-bit (A-bit): whether the byte can be accessed

If a buffer has been free-ed, all its A-bits are 0

Each buffer is surrounded by two red zones (16B each), whose A-bits are 0
Validity-bit (V-bit): whether the bit is initialized

When a fresh buffer is malloc-ed, all it V-bits are 0

Each buffer’s alloc-APIl and CCID are recorded

/(1) Detect overflow: an overflow will touch the inaccessible red zone

(2) Detect use-after-free: a free-ed buffer is set as inaccessible and

then added to a queue to delay the space reuse

k(3) Detect uninitialized read: more complex, but mainly relies on V-bits)

Patches as a configuration file

Each patch is simply a tuple
<alloc-API, CCID, vul-type>

Code-less patching: to “install” a patch, just add one line
in the config file

Configuration file

<API, CCID, Vulnerability>

<memalign, 1854955292, OVERFLOW>
<calloc, 8643565443, USE-AFTER-FREE>
<malloc, 2598251483, UNINITIALIZED-READ>

- Targeted Calling Context Encoding

- Offline Attack Analysis and Patch Generation

- Online Defense Generation

Patches read into a hash table

Configuration file

<API, CCID, Vulnerability>

<memalign, 1854955292, OVERFLOW>
<calloc, 8643565443, USE-AFTER-FREE>
<malloc, 2598251483, UNINITIALIZED-READ>

<MALLQOC, 2598251483> (100),

e A Read by Oniine ~ :

: Hash table Defense Generator |

: Key Value ' Ashared lib
| |[<MEMALIGN, 1854955292> (001),

[

1 |<CALLOC, 8643565443> (010),

]

[

]

. »
Vulnerability Handling

- Handle overflow
- Append a guard page to each vulnerable buffer

- Handle use-after-free
- Delay the deallocation of the free-ed vulnerable buffers

- Handle uninitialized read
- Initialize the newly allocated vulnerable buffer with zeros

Metadata
/ | N
\ : A : A | J
12 bits 48 bits 4 bits

Metadata 4 KB gu?rd page
|

Structure 2
w/t guard page)

_—

I/\ | All - J

24 bits 36 bits 4 bits 48 bits

Metadata
|

g N

Structure 3 Padding

. for
(aligned) alignment
\ A A)
I I I
6 bits 48 bits 4 bits
Metadlata 4 KB guard page
e ~N / ! \
Structure 4 Padding
aligned and wi/t for Unused
guard page) |alignment

\ | A : A :) \)

6 bits 36 bits 4 bits 48 bits

Evaluation

Effectiveness
Program Vulnerability Reference
Heartbleed UR & Overflow CVE-2014-0160
bc-1.06 Overflow Bugbench [57]
GhostXPS 9.21 UR CVE-2017-9740
optipng-0.6.4 UaF CVE-2015-7801
tiff-4.0.8 Overflow CVE-2017-9935
wavpack-5.1.0 UaF CVE-2018-7253
libming-0.4.8 Overflow CVE-2018-7877
SAMATE Dataset Variety 23 heap bugs [58]
Efficiency

SPEC CPU2006: 4.3% (zero patch), 4.7% (one patch), 5.2% (five)
1.9% due to malloc/free hooking, 2% due to buffer metadata maintaining
The 3.9% can be eliminated if our system is integrated into the allocator

MySQL (w/t Heartbleed): mysql-stress-test.pl; no observable overhead

Nginx (w/t Heartbleed): AB; throughput overhead 4.2%

Contribution and Limitations

- The first work that can patch all the following heap vulnerabilities without
manual analysis effort

- Overflow, use after free, uninitialized read

- Prominent features:
- Code-less patching
- Very small overhead (several percentages)
- You can still use your favorite heap allocator

- A showcase how heavyweight offline analysis can be seamlessly
combined with lightweight online defenses

- Targeted calling context encoding: 6x speed up

- Limitations
- Cannot handle some vulnerabilities: e.g., an overflow within a struct
- Overflow leads to DoS: padding may be considered, as used in HeapTherapy
- Re-compilation needed: binary instrumentation is possible

THANKS!

Q&A

Qiang Zeng (zeng1@cse.sc.edu)

< free call >

Overflow bit is set?

Turn the guard page
into a normal page

Get alignment

. o ,)
information Align bit is set”

»| NO

A 4

Get original
buffer address

Push the buffer into
the queue of freed
blocks

Use-after-free
bit is set?

Invoke original free

e

\4

