
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Resilient User-Side Android Application
Repackaging and Tampering Detection Using
Cryptographically Obfuscated Logic Bombs

Qiang Zeng, Member, IEEE, Lannan Luo, Member, IEEE, Zhiyun Qian, Member, IEEE,
Xiaojiang Du, Senior Member, IEEE, Zhoujun Li, Chin-Tser Huang, Senior Member, IEEE,

and Csilla Farkas, Member, IEEE

Abstract—Application repackaging is a severe threat to Android users and the market. Not only does it infringe on intellectual property,
but it is also one of the most common ways of propagating mobile malware. Existing countermeasures mostly detect repackaging based
on app similarity measurement, which tends to be imprecise when obfuscations are applied to repackaged apps. Moreover, they rely on a
central party, typically the hosting app store, to perform the detection, but many app stores fail to commit proper effort to piracy detection.
We consider building the application repackaging detection capability into apps, such that user devices are made use of to detect
repackaging in a decentralized fashion. The main challenge is how to protect the detection code from being manipulated by attacks. We
propose a creative use of logic bombs, which are otherwise regularly used in malware. The trigger conditions of bombs are constructed to
exploit the differences between the attacker and users, such that a bomb that lies dormant on the attacker side will be activated on the
user side. The detection code, which is part of the bomb payload, is executed only if the bomb is activated. We introduce
cryptographically obfuscated logic bomb to enhance the bomb: (1) the detection code is woven into the neighboring original app code, (2)
the mixed code gets encrypted using a key, and (3) the key is deleted from the app and can only be derived when the bomb is
activated . Thus, attacks that try to modify or delete the detection code will corrupt the app itself, and searching the key in the application
will be in vain. Moreover, we propose a bomb spraying technique that allows many bombs to be injected into an app, multiplying the
needed adversary effort for bypassing the detection. In addition to repackaging detection, we present application tampering detection to
fight attacks that insert malicious code into repackaged apps. We have implemented a prototype, named BOMBDROID, that builds
repackaging and tampering detection into apps through bytecode instrumentation. The evaluation and the security analysis show that the
technique is effective, efficient, and resilient to various bomb analysis techniques including fuzzing, symbolic execution, multi-path
exploration, and program slicing. Ethical issues due to the use of logic bombs are also discussed.

Index Terms—Android app repackaging, tamper-proofing, logic bombs.

F

1 INTRODUCTION

A PPLICATION repackaging poses a severe threat to the
Android ecosystem. Dishonest developers unpack apps,

replace the icons and author information with theirs, repack-
age them and then resell them to make profits. Over $14
billion of revenue loss is caused by app piracy each year [2].
The app repackaging procedure can be automated and done
instantly. Moreover, attackers frequently insert malicious

• Q. Zeng is with the Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208.

• L. Luo is with the Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208.

• Z. Qian is with the Department of Computer Science and Engineering,
University of California Riverside, CA 92521.

• X. Du is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122.

• Z. Li is with the Department of Computer Science, Beihang University,
Beijing, China 100191.

• C. Huang is with the Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208.

• C. Farkas is with the Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208.

This manuscript is an extension of the conference version published
in the Proceedings of International Symposium on Code Generation and
Optimization (CGO 2018) [1]. This manuscript adds the presentation of
the new component for application tampering detection, and extends
the system design, security analysis, and evaluation.

code into repackaged apps to steal user information, send
premium text messages stealthily, or purchase apps without
users’ awareness, threatening users’ security and privacy [3],
[4], [5], [6], [7], [8], [9]. Previous research showed that 86%
of 1260 malware samples were repackaged from legitimate
apps [10]. For example, the malicious adware family, Ke-
moge, which infected victims from more than 20 countries,
disguised itself as popular apps via repackaging [11].

Because of the importance of the problem, many repack-
aging detection techniques have been proposed. Most of
them are based on app similarity comparison [3], [12],
[13], [14], [15], [16], and, thus, tend to be imprecise when
obfuscations are applied to repackaged apps. Besides, they
usually rely on a central party, typically the app store, to
conduct detection; there are a plethora of alternative app
markets, but their quality and commitment in repackaging
detection are questionable [17]. Finally, users may download
apps from places other than any markets (such as FTP
and BitTorrent) and install them, bypassing the centralized
detection. Due to these limitations, numerous repackaged
apps escape detection and get installed on user devices [3].

We consider a decentralized detection scheme that adds
repackaging detection capability into the app being protected.
The repackaging detection becomes an inherent capacity of

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the app and, hence, does not rely on a third party. The main
challenge obviously is how to protect the repackaging detection
capacity from attacks. While the goal of decentralized detection
is highly desired and some attempts have been made towards
it, that challenge is not solved. For example, a state-of-the-art
defense, SSN [18], proposes to conduct repackaging detection
at a very low probability to hide the detection nodes.
However, such probabilistic computation (based on the
return value of rand()) can be turned deterministic through
code instrumentation. Plus, SSN tries to conceal certain API
calls (mainly getPublicKey()) through reflection. But by
inserting code that checks the reflection call destination,
all those calls can be revealed and manipulated. Actually,
SSN can be bypassed in multiple other ways (detailed in
Section 2.2). The failed attempts also show how difficult it is
to conquer the challenge.

Our protection techniques are based on our observations
that the attacker side is very different from the user side,
which is mainly reflected in the following two observations:

O1 Inputs and environments. The inputs, hardware/soft-
ware environments and sensor values are very diverse
on the user side, while the attacker can only afford the
time and money to run the app under a limited number
of environments [19]. With regard to inputs, although the
attacker can feed the program execution with numerous
inputs, they do not necessarily trigger the execution of a
large number of unique execution paths [20]. This leads
to our another observation.

O2 Code coverage. The attacker typically can only afford to
analyze a small portion of the app, while users, with
time, play almost every part of the app.

Such observations are consistent with some well-known chal-
lenges in software testing [21]. That is, even with significant
time and effort invested, a commercial program typically
can only be tested under a small number of environments
and inputs compared to the user side. In practice, it is very
difficult and expensive to achieve a high code coverage [22].
We propose to exploit the differences, which otherwise are
deemed root causes of “challenges” in software testing, to
protect the inserted repackaging detection capacity from
attacks. To that end, we propose a creative use of logic bombs,
which are normally used in malware, and the following two
design strategies.

• Exploitation of O1. The trigger condition of a bomb is
crafted such that a bomb which keeps dormant on the
attacker side will be activated on one of the user devices.
For instance, a trigger condition can test whether the app
runs with a specific input or at a specific GPS location
(we assume attackers can forge fake GPS values, and our
system is resilient to such attacks). While it may be costly
for an attacker to trigger a given bomb, it is actually free
to rely on users who play the app to activate it.

• Exploitation of O2. The bombs are inserted into various
parts of an app (and our optimization phase will remove
bombs that incur large overheads), such that many
bombs can survive the adversary analysis of attackers.

To protect the logic bombs, we additionally apply the
following enhancements. First, each logic bomb is encrypted

and, more importantly, the decryption key is not embedded
in the app (which is unlike code packing used in virus);
instead, the key can only be derived when the trigger condition is
satisfied during program execution (detailed in Section 4.2). As
the code is encrypted, attacks that try to search for specific
API calls or bypass trigger condition will fail. Second, the
bomb code is woven into the original app code before being
encrypted, such that attacks that simply delete suspicious
code will corrupt the app execution. In short, through these
design strategies, we can achieve the following three goals:

G1 Resilience. The user-side detection avoids single points
of failure and is resilient to attacks.

G2 Security through keys. The strength of the scheme
comes from the need of the key for decrypting the bomb
payload rather than keeping the algorithm secret.

G2 Non-stealthy defense. Unlike conventional software
tampering detection techniques that try to conceal the
code for integrity checking [18], [23], [24], [25], which is
difficult to achieve, we do not hide our bombs but deter
attackers from deleting or modifying them.

In addition, we propose techniques for detecting code
tampering, which is frequently caused by attackers that insert
malicious code and hence implies extraordinary dangers.
Plus, the proposed techniques can be generalized to de-
tect tampering of other app files. We have implemented
the decentralized detection technique in a system named
BOMBDROID, which adds the detection capacity to an app
through bytecode instrumentation. Thus, it does not require
the source code of apps to apply the technique, which means
a third-party company may sell this service to developers
who want to enhance their apps. We evaluated BOMBDROID
on 1,463 Android apps. The evaluation results and security
analysis show that the protection provided by BOMBDROID
is effective in repackaging detection, resilient to various
adversary analysis, and incurs a very small speed overhead
(~2.8%). We made the following contributions.

• We present the first resilient user-side Android app
repackaging and tampering detection technique which
builds the detection capacity directly into apps. Logic
bombs are creatively used for a benign purpose, that is,
protecting the detection capacity from attackers.

• We propose effective measures to enhance the bombs
(called cryptographically obfuscated logic bombs) based on
encryption and code weaving, such that our technique
is resilient to various adversary analysis and code
modification and deletion attacks. A novel double-trigger
logic bomb structure is proposed to allow fine control of
the trigger condition.

• We have implemented a prototype system, and analyzed
and evaluated its effectiveness, resilience, and efficiency.

The rest of the paper is organized as follows. Section 2
describes the background on app signing and logic bombs,
and introduces the threat model. Section 3 presents our goal,
assumptions, and the system architecture. Section 4 intro-
duces cryptographically obfuscated bombs for protecting
the repackaging detection capability from attacks. Section 5
presents how we detect app repackaging and code tampering,

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

1 if(rand() < 0.01) {
2 funName = recoverFunName(obfuscatedStr);
3 // The reflection call invokes getPublicKey
4 currKey = reflectionCall(funName);
5 if(currKey != PUBKEY)
6 // repackaging detected!
7 // response is delayed
8 }

Listing 1: A vulnerable design.

and Section 5.3 discusses the detection response. Section 6
covers the security analysis on the resilience of BOMBDROID
to various evasion attacks. Section 7 introduces double-
trigger bombs to further improve the resilience. Section 8
describes the implementation details of BOMBDROID. Sec-
tion 9 presents the evaluation results. The related work and
the discussion are presented in Section 10 and Section 11,
respectively. The paper is concluded in Section 12.

2 BACKGROUND AND ADVERSARY MODEL

2.1 Background
Signing Applications. Each developer owns a unique public-
private key pair. Before an app is released, it has to be
signed using the developer’s private key. The process of
signing an app calculates the digests of the app files and
then generates a signature based on these digests. When
an app is installed, the Android system checks the digests
and verifies the signature using the public key. Note that
this itself does not detect code modification or repackaging,
since attackers always re-sign the app upon repackaging,
which replaces the digests and signature carried in the app.
However, the public key contained in the APK file of the
repackaged app is certainly different from the original one.
Therefore, it is viable to detect repackaging by comparing
the original public key against the one in the app’s certificate.
Similarly, by comparing with the original digests, we can
detect code tampering.
Logic Bombs. A logic bomb is a piece of code consisting of
a trigger condition and a payload; when the trigger condition
is met, the bomb is triggered (or, activated) and the payload
code gets executed. The input or event that makes the trigger
condition satisfied is called a trigger. For example, given a
time bomb that executes its payload at some specific time, its
trigger is the predefined time. A payload usually corresponds
to some malicious function, such as formatting a hard drive
or sending out private information. While logic bombs have
been widely used in writing malware, such as Trojans and
worms, we employ them for a defense purpose, that is,
constructing countermeasures against app repackaging.

2.2 Adversary Model
SSN’s design. To discuss the adversary model in a more
concrete way, we first illustrate a vulnerable defense designed
in SSN [18], shown in Listing 1. The defense can be easily by-
passed by attackers. It can be used by legitimate developers
during compile time to build repackage detection capability
into their apps.

Listing 1 illustrates a repackaging detection node inserted
by SSN. It detects repackaging by comparing the app’s
current public key currKey, to the original one PUBKEY,

which is embedded into the code (Line 5); a hash is applied
to both PUBKEY and currKey, such that an attacker cannot
search the literal value of PUBKEY to locate the detection
nodes. The currKey is retrieved through a call to the
Android system service API getPublicKey. In order to
hide the call from attackers, SSN proposes the following
measures. (1) Repackaging is only invoked probabilistically
to hide the detection nodes from fuzzing analysis (Line 1).
(2) The function name “getPublicKey” is obfuscated and the
call is issued through reflection (Line 4), such that attackers
cannot locate the call through text search. (3) Some calls in
the app are converted to be issued through reflection calls
as well; hence, attacks that delete reflection calls will not
work. (4) When repackaging is detected, instead of taking a
response immediately, the response is delayed to confuse the
adversary analysis.

Next, we present the capabilities of attackers and attacks
against our defense. As our technique leverages logic bombs,
we consider not only various common attacks but also the
state-of-the-art adversary analysis against bombs. We also
show how SSN is vulnerable to multiple types of attacks.

Text search. An attacker may search for specific text patterns,
such as “getPublicKey”, to locate repackaging detection
code. In the case of SSN, it hides calls to getPublicKey
through reflection calls and transform some normal calls into
reflection calls as well, so it is resilient to such attacks. Note
that text search for PUBKEY (Line 5) will fail, since instead
of using the original public key, SSN derives a value from
PUBKEY using a custom hash to eliminate the literal key
value from the code.

API-hooking assisted analysis. An attacker may install the
repackaged app and run it on an emulator or a real device.
Whenever suspicious symptoms arise, the attacker may
use a debugger to trace back to the repackaging detection
code. In particular, an attacker may try to intercept critical
calls the repackaging detection code relies on. For instance,
an attacker may hook calls to getPublicKey in order to
locate the repackaging detection code. The attacker is also
free to forge the return values for API calls (such as fake
GPS locations) to fool our system to assist his investigation.
However, running a protected app in order to trigger all or
most of the repackaging nodes is too costly, so we regard
SSN rather resilient to such attacks.

Blackbox/greybox fuzzing. An attacker may use fuzzing to
run the repackaged app by providing a large number of
inputs to trigger as many detection nodes as possible [26],
[27], [28]. For every activated node, the attacker can trace
back and disable it. To handle such attacks, SSN proposes
a “stochastic” mechanism by invoking rand() (Line 1).
However, by manipulating the return value of rand(),
attackers can turn the probabilistic activation of detection
nodes into deterministic, such that whenever a path con-
taining a detection node is executed, the node can be surely
revealed to attackers. That is, the design goal of “stochastic”
activation of detection nodes in SSN fails.

Whitebox fuzzing. Various techniques have been proposed
to explore execution paths in a program. A dynamic analysis
based approach is to explore multiple paths during execu-
tion [29]. Symbolic execution has been widely applied to

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Public key Protected

unsigned APK

condition

Repackaging

detection nodeNCandidate

methods &

locations

Packaging

Bytecode

instrumentation Protected

code
Obfuscations

& encryption
Static

analysisJava class
Disassembling

APK

Unpacking

Other Res.

CERT.RSA

classes.dex

Step 1 Step 2 Step 3 Step 4

Fig. 1: Architecture of BOMBDROID.

discovering inputs that execute a program along specific
paths [30], [31], [32], [33], [34]. It uses symbolic inputs
to explore as many paths as possible, and resolves the
corresponding path conditions to find the concrete inputs.
When symbolic execution is applied to SSN, Line 1 cannot stop
symbolic executor from exploring (and hence exposing) the path
containing repackaging detection. Note that we also assume
attackers can augment conventional fuzzing with selective
symbolic execution (such as Driller [35]) to enhance the
adversary analysis. Plus, recent research shows that symbolic
execution is an effective approach to discovering conditional
code and identifying trigger conditions [33].

Backward program slicing. An attacker may simply cir-
cumvent trigger conditions and execute payloads directly.
Specifically, given a line of suspicious code, an attacker may
perform backward program slicing starting from that line of
code, and then execute the extracted slices to uncover the
payload behavior [36]. Or, the attacker may apply forced
execution to directly execute the code that is suspected to
be payloads [37]. Take SSN as an example: an attacker can
circumvent Line 1 to execute the following code; thus, SSN
is vulnerable to such attacks.

Code instrumentation. An attacker may modify code to
bypass the detection. In SSN, e.g., the attacker can insert code
right before a suspicious reflection call to check the desti-
nation of that call, i.e., if(funName==“getPublicKey”),
and modify funName at will.

Code deletion. A trivial attack is to delete any suspicious
code. Code deletion is not difficult to defeat. As shown
later, we can transform some of the original app code into
a suspicious form (the form of logic bombs), or weave the
logic bombs with the original app code, such that deletion of
such code may lead to corruption of the app.

The example of SSN, which is vulnerable to a variety of
attacks, shows there exist plenty of pitfalls when designing
a user-side repackaging detection technique and it also
illustrates how challenging it is to propose a resilient design.

3 GOALS, ASSUMPTIONS AND ARCHITECTURE

3.1 Goals and Assumptions

Goals: Our goals are as follows: (G1) it should be resilient
to whitebox fuzzing; (G2) it should be resilient to attacks via
text search, code instrumentation, and backward program slicing;
(G3) it should be resilient to API hooking assisted analysis and
blackbox/greybox fuzzing; and (G4) it should defeat attacks
based on code deletion. We divide these attacks into different

groups, and will show how different groups of attacks can
be defeated by different techniques.

Assumptions: We assume user devices are not in collusion
with pirates. Specifically, we assume users devices are not
rooted; otherwise, the OS or Android framework on the user
device could be modified to mislead our detection. Actually,
only 7.6% of Android devices are rooted [38], and those device
do not necessarily collude with developers of repackaged
apps. However, attackers are allowed to hack and modify their
own Android systems arbitrarily to assist adversary analysis.

3.2 Architecture
Figure 1 shows the procedure of building the repackaging
detection capacity into an app. The input is the APK file of
the app to be protected. BOMBDROID works on the binary
code level. This is different from the prior state-of-the-art
SSN [18], which can only work on source code.

The procedure involves the following four steps. (1) The
APK file is first unpacked to extract classes.dex (which
is then converted to a collection of Java classes) and a folder
of resources containing the CERT.RSA file. (2) BOMBDROID
extracts the public key from CERT.RSA, and selects candidate
locations for inserting logic bombs through analysis of
the app. (3) For each candidate location, a logic bomb is
constructed and inserted by instrumenting the binary code.
(4) The bomb code is then encrypted and the encryption key is
deleted from the app code. The output is a protected app and
will be sent to the legitimate developer to sign the app. Note
that the private key is kept by the legitimate developer and
is not disclosed to BOMBDROID.

4 LOGIC BOMBS FOR REPACKAGING DETECTION

4.1 Naive Use of Logic Bombs

Listing 2: A naive use of logic bombs.
1 if (X == c) {
2 // payload consists of repackaging detection and

response code
3 payload;
4 }

While logic bombs have been widely used in building
malware and are very effective in practice for keeping
malicious code dormant until “correct” conditions are met,
a naive use of logic bombs is vulnerable to attacks. For
example, as shown in Listing 2, a logic bomb is used for
repackaging detection, which should not be activated unless

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

the trigger condition X == c is true, where X is a variable
or an expression, and c is a constant value. Consistent with
the analysis in Section 2.2, the piece of code is vulnerable to
various attacks. For example, the attacker may modify the
bytecode such that the trigger condition is never met; worse,
the attacker can circumvent the trigger condition evaluation
to analyze and reveal the enclosed code directly [36]. Actually,
it shares all the weaknesses of SSN. Thus, a naive use of
bombs will not work for our purpose.

4.2 Cryptographically Obfuscated Logic Bombs

Listing 3: A cryptographically obfuscated logic bomb.
1 if(Hash(X) == Hc) // Hc= Hash(c)
2 // payload is encrypted and can only be decrypted

when X=c
3 p = decrypt(encrypted_payload, X);
4 execute(p);
5 }

To defeat such attacks, we present a cryptographically obfus-
cated logic bomb structure. Let us take the code in Listing 2
as an example to show how to transform a vulnerable bomb
to a cryptographically obfuscated bomb. First, the trigger
condition “X==c” in Listing 2 is transformed into Hash(X)
== Hc, where Hc = Hash(c). Second, the repackaging
detection code is encrypted (before the app is released) and
can only be decrypted correctly when X = c; any attempts
that try to decrypt the code with an incorrect key will fail.
Finally, the constant value c, which works as the key, is removed
from the code, which means that an attacker cannot expect
to search the code to find the correct key to recover the
encrypted code. Through such transformation, the code in
Listing 2 is transformed into the code shown in Listing 3.

The transformation applies both cryptographic hashes
and encryption. A cryptographic hash function has two
properties that are critical for transforming a condition X ==
c to the obfuscated condition Hash(X) == Hc, where Hc

= Hash(c). First, the one-way function (pre-image resistance)
property means it is difficult to recover the constant value
c based on Hc, which ensures that it is computationally
infeasible to reverse the obfuscation and hence defeats
constraint solvers relied on by symbolic execution. Second,
the second pre-image resistance property makes it difficult to
find another constant value c′ whose hash value is also Hc;
thus, the obfuscated condition is semantically equivalent to
the original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the corresponding
obfuscated version: only when mMode is assigned with
0xfff000, can the payload code be successfully decrypted.

if (mMode == 0xfff000) {

 payload;

}

if (Hash(mMode) ==

da4b9237bacccdf19c0760cab7aec4a8359010b0) {

 p = decrypt (encrypted_payload, mMode);

 execute (p);

}

When designing the cryptographically obfuscated logic
bombs, we were inspired by user authentication invented
by Roger Needham [39], which stores user passwords as
hash values [40], such that user passwords are not exposed
but the authentication can still be performed. We found
such transformations were widely discussed by researchers

working on virtual black-box obfuscation [41] and concealing
malware [42]. Their work confirms the security of such
transformations.

4.3 Trigger Conditions
A condition that can be used as a trigger condition for
the transformation must check equality of two operands
with one of them having a constant value; the equality
checking includes == and comparison methods such as
string’s equals, startsWith, and endsWith. We call
such a condition a qualified condition (QC). Without loss of
generality, a QC is denoted as “φ == c” in the following
presentation, where φ is an expression or variable and c has
a statically determinable constant value.
Existing qualified condition. A logic bomb can use a QC
in the original code to build its trigger condition, which is
called an existing qualified condition. While medium and large
sized programs usually have many existing QCs, smaller
programs may not, which limits the number of logic bombs
that can be inserted.
Artificial qualified condition. The limitation can be resolved
by inserting artificial qualified conditions: given a program
location L, a program variable φ, and a constant value c,
assume L ∈ scope(φ) and c ∈ dom(φ), where scope(φ)
denotes the program locations where φ can be accessed and
dom(φ) is the set of all possible values of φ. Then, φ == c is
an artificial QC that can be inserted at L and work as a trigger
condition. In an app, program variables with many possible
values (i.e., a high entropy) are suitable for this purpose.
Without knowing the program logic, it is difficult to determine
whether a condition is an existing or artificial one. Based on
this technique, we can perform bomb spraying; i.e., inserting
many bombs into apps and thus significantly increasing the
needed efforts of the adversary trying to bypass the detection.

If “φ” can take very few possible values, e.g., it is a
boolean expression, it is trivial for attackers to guess the key
with a few tries. However, for artificial QCs, We can select
“φ” with a large ∈ dom(φ). This is discussed in Section 6.2.

4.4 Countermeasures against Code Deletion
An easy-to-conceive attack is to delete all suspicious code
that involves cryptographic hash computation and code
decryption. We apply the following countermeasures.
Code weaving. The first countermeasure is to weave the
payload (i.e., the repackaging detection and response code)
into the original app code. It is particularly suitable when a
logic bomb is built based on an existing qualified condition
(QC). When instrumenting the bytecode and injecting code,
the repackaging detection and response code is woven into
the body of the if statement for the existing QC. After
code weaving, if attackers delete conditional code that look
suspicious, it will corrupt the app itself. The consequences
of corrupting an app can be various, such as instability,
visualization errors, incorrect computation, or crashes.
Bogus bombs. The second countermeasure is to transform
some conditional code of the app into the form of logic
bombs, which we call bogus bombs. Deletion of bogus bombs
will corrupt the app as well. Through such countermeasure,
it is difficult for attackers to determine whether a piece of
suspicious code is a real or bogus logic bomb.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

It is clear that the repackaging detection code is part
of the code that looks very suspicious. Instead of hiding the
protection code, our technique deters attackers from deleting the
suspicious code.

5 DETECTION AND RESPONSE

Repackaging and tampering detection as well as the response
are inserted as the payload of logic bombs. Section 5.1 and
Section 5.2 present how to detect repackaging and code
tampering, respectively. How to construct the response is
described in Section 5.3.

5.1 Detection of Repackaging
As in SSN [18], we also make use of public-key comparison
to detect repackaging. Each developer (or software company)
has her own public-private key pair; thus, once an app
is repackaged and resigned, the public key of the app
must be different from the original one. We can retrieve
the public key Kr at runtime and compare it against the
original public key Ko to detect whether the app has been
repackaged. Ko is extracted from CRET.RSA in the input
APK file and then hard coded into the detection code, while
Kr is retrieved by invoking an Android Framework API
Certificate.getPublicKey.

5.2 Detection of Code Tampering
5.2.1 Motivation
In the process of repackaging apps, attackers may insert
malicious code into apps to launch various attacks. Previous
research showed that 85% of malware propagated in the form
of repackaged apps [10]. So we regard repackaged apps with
code modifications as extraordinary dangerous. Android markets
should promptly take down such apps, while users should
be informed clearly if the devices contain such apps. Thus,
it would be beneficial if we can not only detect repackaged
apps, but also make more fine-grained detection to determine
whether the repackaged apps’ code has been modified.

5.2.2 Main Idea
Conventional code-tampering detection is mostly built on
code-snippet scanning [43]. The advantage is that the code
scanning can conveniently masquerade itself as normal
memory reading, since the text section is mapped into the
address space. However, this approach does not work well
for Android apps: instead of being mapped to memory, their
bytecode is re-compiled into native code upon installation, so
it is not portable to estimate the checksum of the resulting native
code. Plus, it is difficult to scan memory stealthily in Java
programs due to its type-safety enforcement.

App signing (Section 2) generates a folder, META-INF,
consisting of three files; one of them is MANIFEST.MF
containing the digest of each app file. That is, each file in
the app has a digest stored as part of each app. When an
app is installed, all digests are verified and recorded by the
Android system and cannot be modified by app processes
afterward. If a file is modified during repackaging, its digest
must change. Thus, instead of performing code scanning, we
resort to using code file digests to detect code tampering. We
leverage the Android system to retrieve the code file digests

and compare them against the original digests we store in
the app. If they are not equal, code tampering is detected.

While the real digest Cr of a file is retrieved at runtime by
invoking Android system services, we store the information
about the original digest Co in the protected app. However,
due to circular dependency it is impossible to put the digest
of a file inside that file; we thus propose to put Co out of
the code file. We propose two different resilient ways, salted
hashing and steganography, to achieve it.

Note that the code files above include both classes.dex
and native library files. Actually, the code tampering detec-
tion approach can be easily generalized to check the integrity
of other files, such as images and music files, since each file
has its own digest stored in MANIFEST.MF.

5.2.3 Using Salted Hashing to Store Digests

The digest checking is coded as if(Hash(Cr, st) ==
P(S)), where st is a salt (i.e., a unique random integer) and
Cr is the real digest retrieved at runtime, and the function call
P(S) retrieves the stored digest Do from the string named S
in strings.xml, which contains all string literals needed
by the app (note that other files in the app or a newly added
file may also be used).

After detection nodes are inserted, we obtain the original
digest Co. The final step is to construct the value of S as
the salted hash value, Hash(Co, st), using the Base64
binary-to-text encoding and insert S into strings.xml.

Obviously, the value of S looks suspicious from other
normal string values; but attackers do not know how to
manipulate it unless they know the salt value, which is
encrypted as part of the detection code. Therefore, instead
of trying to make our approach stealthy, this design is non-
stealthy: even if attackers suspect where the information
stored, they cannot manipulate it successfully.

5.2.4 Using Steganography to Store Digests

The second approach adopts Steganography. Steganography
is the strategy of hiding a secret message inside a file to
conceal the existence of the secret message without drawing
suspicion to others. In our case, the secret message is
the information about the digest T(Cr), where T() is a
transformation function such as a custom hash function.
There are many different methods for steganography. Below
we give two concrete examples for conducting it.

Note that such information hiding can eliminate or
mitigate the suspicion by attackers, which can be regarded
as an advantage of this approach compared to using salted
hashing. However, the security does not rely on stealthiness,
as even an attacker knows which part of the app is used
to hide the digest information, he does not know how to
manipulate it since the custom hashing code for converting
the digest is encrypted.

Storing Digest Information in strings.xml. The digest
checking is coded as if(T(Cr) == P(S)), where P(S)
represents how to retrieve the characters based on a string
named S in strings.xml. E.g., if the logic of retrieving the
characters is to get the second and seventh letters from the
string named “info” and assume, after the code file is finalized,
we calculate T(Co) as ‘en’, then we can make up a string

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

accordingly. The benefit is that, given the characters, we can
hide them into a sentence that looks normal as shown below.

<string name="info">Help animals!</string>

Storing Digest Information in the Launcher Icon. We
can also hide the original digest in the launcher icon of
the app. The digest checking is coded as if(T(Cr) ==
F(ρ)), where ρ indicates the positions where the converted
digest information is embedded at the launcher icon. We
adopt a very simple Least Significant Bit (LSB) based image
steganography technique [44]; it is known that human eyes
cannot notice the difference of an image when the LSBs of
pixels are modified [44]. Thus, we use the LSBs of pixels at ρ
to store the value of T(Cr).

Android uses 32-bit PNG icons, where each pixel is made
up of 4 bytes representing alpha, red, green, and blue (with
each using one byte), and is stored as: (alpha << 24) | (red
<< 16) | (green <<8) | blue, so there are four LSBs for each
pixel (the right-most bit of alpha, red, green and blue each).
E.g., to embed four bits of T(Cr), we simply select one pixel,
and then overwrite the four LSBs of the pixel with the four
bits. The process is illustrated as follows. Given a selected
pixel below,

00010110 01110111 01110100 01110001

assuming the 4-bit binary number to be embedded is: 0011,
we hence overwrite the four LSBs of the pixel with the four
bits, respectively (where bits in bold have been changed):

00010110 01110110 01110101 01110001

In order to manipulate the icon, the attacker needs to
know the code of T(Cr) and the positions of the selected
pixels ρ; both are part of the encrypted code. In short, the
code tampering detection code leverages the power of logic
bombs to keep resilient to attacks.

5.3 Response to Detected Repackaging
The responses should cause negative user experiences, such
that users give a bad rating or even flag the app as malicious.
For example, the response may set a reference variable to be
NULL, cause memory leak (e.g., by allocating a large data
structure and pointing to it using a static reference field), set
up a timer that will terminate the process, or launch a thread
executing an endless loop. It is worth mentioning that the
resilience of our approach relies on the difficulty of triggering any
given logic bomb on the attacker side, rather than increasing the
difficulty of analyzing and debugging the inserted errors.
This not only simplifies the design, but also makes the
security analysis more clear (see Section 6).

In addition, if code tampering is detected, the response
should warn users of the high risk. Many ways can alert users
through, e.g., TextViews, PopupWindows, and Dialogs.
The response can also send a brief description of the repack-
aged app to the developers, who can take further actions,
such as requesting the store to take down the repackaged
app. This way, the effect of repackaging detection is virtually
propagated from one device to others. Moreover, how to collect
software piracy information in an inexpensive and scalable way
has been a challenge for many app companies, and our technique
can serve as a solution for them.

6 SECURITY ANALYSIS

6.1 General Attacks

We then examine how the goals described in Section 3.1
are achieved in our design. First, whitebox fuzzing tech-
niques [29], [30], [31], [32], including symbolic execution and
multi-path execution, typically rely on resolving constraints
correctly for the purpose of path exploration. In our case,
even given a powerful symbolic executor that can explore any
execution path (until it reaches a logic bomb) efficiently,
when it encounters a logic bomb, the essential problem
becomes this: the constraint Hash(X) == Hc introduced
by the bomb, where Hc is the hash value of a constant value
c (we use the notations in Section 4), has to be resolved in
order obtain the key to decrypt and analyze the payload
code. However, as cryptographic hash functions cannot be
reversed, no constraint solvers can solve it. Therefore, we have
achieved G1 successfully.

It is widely known that conclic execution is powerful
in dealing with specific non-linear constraints. Particularly,
given a condition Hash(X) == Y, where X and Y are both
symbolic inputs, if a previous execution has explored the false
branch with X = 2 and Y = 10, i.e., Hash(2) != 10, then
the next execution can keep the value of X, but change the
value of Y to make Hash(X) == Y; e.g., assume Hash(2)
== 5, then the variables are assigned as X = 2 and Y = 5.
This way, the next execution will explore the true branch.
It seems that conclic execution can handle hash functions.
But note that there is a subtle and critical difference: the
constraint Hash(X) == Y involves two symbolic inputs
that allow flexible value assignment, while the right operand
of the constraint Hash(X) == Hc is a constant hash value
and resolving it needs to reverse the cryptographic hash
function, which is infeasible. Note that the correct value of X
(i.e., the key used for encryption and decryption) needs to be
computed in order to decrypt the encrypted code correctly;
any attempts that try to decrypt the code with an incorrect
key will fail.

Second, as the repackaging detection and response code is
encrypted, attacks that rely on text search, code instrumen-
tation, and backward program slicing for circumventing
conditions for forced execution will all fail. Thus, G2 is
achieved as well.

Third, it is not surprising that through blackbox/grebox
fuzzing, an attacker is able to trigger some logic bombs. But it
has been a known challenge in the software testing area how
to achieve a high test coverage [22]; thus, we insert many
logic bombs into different parts of an app. Regardless of
conventional fuzzing (such as AFL [28]) or fuzzing enhanced
by symbolic execution (such as Driller [35]), they are very
inefficient for generating inputs that can satisfy the trigger
condition Hash(X) == Hc of a bomb. For example, given
a trigger condition converted from X == 0x12345678, it
may take a fuzzer billions of times of tries to satisfy it. API-
hooking assisted analysis allow attackers to forge the return
values for API calls, but it does not help analyze a given logic
bomb, since the trigger condition Hash(X) == Hc does not
tell which value of X should be used when forging the return
value. Therefore, G3 is also achieved.

Fourth, as described in Section 4.4, code deletion is
defeated by code weaving and bogus bombs (G4).

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

6.2 Attacks against Keys
As the key of a logic bomb is important, we consider attacks
specifically against keys. Attackers may try to figure out
the key used in each logic bomb. One approach is brute
force attacks. Given an obfuscated condition Hash(X) ==
Hc, attackers may compute Hash(X) for all possible values
of X to identify a value that satisfies Hash(X) == Hc. Thus,
the strength of the hash operation is determined by the set
of possible values that X may take, denoted as dom(X). Let t
be the time needed to verify one value of X, then the brute
force attack for cracking a key will take |dom(X)| ∗ t time.
Therefore, the obfuscation strength of a logic bomb can be
measured based on the size of dom(X).

One way of determining the upper bound of |dom(X)|
is based on the number of bits of X. For example, if X is an
32-bit integer, the brute force attack may take up to 232t time.
Generally, if X has n bits, the attack needs 2nt time. Thus,
an obfuscated condition that depends on a string variable
tends to be more resistant than a condition that involves a
boolean variable. To reduce the search time, attackers may
attempt to apply rainbow attacks, which use a precomputed
table that contains all the mappings between the values of
X and their hash values for the purpose of reversing hash
functions. However, it is well known that such attacks can be
defeated by mixing a unique plaintext salt (for each bomb)
into the hash computation (i.e., Hash(X, salt)), so the
precomputed table will not work.

6.3 Attacks via User-Side API Interposition
Once an app is installed on the user side, its certificate is
managed by the Android system and cannot be modified
by app processes. However, since the detection code relies
on APIs such as getPublicKey, we need to consider API
interposition and manipulation on the user side that returns
a fake return value to fool our system. While most of the
Android API hooking methods have been proposed for
security analysis and defense purposes, we consider the
possibility that attackers employ them to evade our detection.
Note that Android API hooking has been an active research
problem, so we do not intend to make an exhaustive list, but
discuss based on the following main categories.

API interposition based on roots. Many Android API
interposition systems rely on the root privilege to work [45],
[46], [47]. For example, ARTDroid [47] illustrates the in-
terposition of API calls by manipulating vtable entries; it
requires the root privilege. we assume user devices are not
rooted (Section 3.1). Android rooting may brick the user
devices, avoid warranty, and allow more possible access
rights to malware; actually, only 7.6% of Android devices are
rooted [38], and these device owners do not necessarily grant
the root privilege to the repackaged apps.

API interposition based on code rewriting. Another
approach to manipulating the API calls is via code rewrit-
ing [48], [49], but modification of encrypted code will corrupt
the app and, hence, is not viable.

API interposition based on reloading system libraries.
Reference Hijacking [50] proposes to load customized system
classes from specified paths in the early stage of application
launching, such that system API calls are hooked and
handled by the customized system classes. The technique is

Outer trigger

Repackaging
detection and

response code

Code here
is encrypted

(a) Single-trigger bomb

Outer trigger

Inner trigger

Repackaging
detection and

response code

Code here
is encrypted

(b) Double-trigger bomb

Fig. 2: Two types of logic bombs. We used double-trigger
bombs in our implementation.

proposed for security purposes (e.g., tainting and patching),
but theoretically it may be leveraged to fool our system.
However, attackers usually prefer the piracy to be stealthy,
while the action of reloading system libraries is unusual and
very suspicious. So we doubt it can become an attractive
technique to attackers for the repackaging purpose.

API hooking based on sandboxed processes. Boxify [51]
proposes to run the app to be monitored as a de-privileged
isolated process, and meanwhile run a broker process that
interposes all Android API calls from the isolated process.
Like Reference Hijacking, Boxify is proposed for defense
purpose for sandboxing untrusted apps. Isolated processes
are rarely adopted by apps. NJAS [52] is another sandboxing
technique that relies on ptrace. we argue that such unusual
features are barely interesting to attackers, who want their
repackaged apps keep stealthy from security analysis.

In short, evasion attacks by API interposition to return
fake values either requires unusual features (such as the root
privilege, isolated processes, and reloading system libraries)
or rewriting the encrypted code. Thus, they should not
constitute a likely threat to our system.

7 ENHANCEMENT: DOUBLE-TRIGGER BOMBS

As symbolic execution, which is commonly used in whitebox
fuzzing for a higher code coverage, cannot be used to “crack”
our bombs (Section 6), we estimate that attackers may invest
more on blackbox/greybox fuzzing, e.g., by renting cloud
services to run multiple fuzzers concurrently for a prolonged
period of time. Even though we have shown that fuzzing is
very inefficient in triggering our bombs, to make our defense
even more resilient to fuzzing at scale, we propose double-
trigger bombs.

Fig. 2a shows the structure of a single-trigger bomb
presented above (in Section 4.2), while Fig. 2b shows a
double-trigger bomb structure. In a double-trigger bomb, an
extra environment-sensitive inner trigger condition is inserted
and the logic bomb is activated only if both trigger conditions
are met. In a double-trigger bomb, both the inner trigger
condition and payload (i.e., the repackaging detection and response
code) are encrypted.

With double-trigger bombs, we can finely exploit the
sharp differences between the attacker side (who runs apps
in a limited number of different environments) and the
very diverse user side. While the outer trigger condition
is satisfied only if the control flow reaches the trigger
condition with X == c (Line 1 in Listing 3), the inner
trigger condition is met only if the app runs on a device

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

under some specific environment in terms of the system
build number, IP address, GPS location, etc. Given the huge
number of possible environment variable values and their
combinations, attackers have to invest enormously to keep
trying different environments for triggering logic bombs. As
another example, a bomb can be constructed such that it
sets off only if the app is played at some specific time; thus,
running an app for a longer time does not necessarily trigger
the bomb. Even when the attacker happens to fake the time
correctly, it requires correct input to satisfy the outer trigger
condition of that bomb.

The inner trigger condition is a quantifier-free first-order-
logic formula consisting of one or more constraints, which
are concatenated by && or ||; each constraint is in the form of
“f(env) op r”, where op∈ {<,>,==, ! =}, r is a constant
value, and f() is a function of env. Below are some example
environment variables that can be used in an inner condition.

• Hardware environment and status. Different user de-
vices have different manufacturers, boards, boot loader
versions, brand names, CPU types, display metrics,
MAC addresses, serial numbers, flash sizes, etc.

• Software environment, e.g., SDKs, API levels, OS ver-
sions, IP addresses, etc.

• Time and sensors. A trigger condition can be constructed
based on time and sensor information, such as GPS, light,
and temperature.

Since the inner trigger condition is part of the encrypted
code, given a bomb it is unlikely for the attacker to correctly
estimate which of the many environment variables has been
used and which value range is the trigger input. We also
emphasize that the security of our system takes this as an
enhancement (particularly against fuzzing at scale), rather
than a must. As analyzed in Section 6, neither conventional
fuzzing or fuzzing assisted by symbolic execution is effective
in defusing the inserted bombs.

8 IMPLEMENTATION

This section describes the implementation details of BOMB-
DROID. Our current prototype implemented the two repack-
aging detection methods described in Section 5, including
detecting repackaged apps and detecting repackaged apps
with illegal code modification via salted hashing. The imple-
mentation comprises 9,668 lines of Java code.

8.1 Candidate Methods

Given an app, in order to avoid a high overhead, we first
use profiling to find hot methods, i.e., the most frequently
invoked ones, and exclude them from instrumentation; All
the other methods in the apps are candidate methods used to
insert logic bombs. Specifically, we first use Dynodroid [27]
to generate a random stream of 10, 000 user events and feed
them to the app. Meanwhile, we use Traceview [53] to log
the execution trace, which includes the invocation count of
each method. The top 10% most frequently invoked methods
are considered as hot methods and are excluded. All other
methods, no matter they are reached by the dynamic analysis
or not, are candidate methods used to insert bombs.

if (X == a | | Y == b) {

 foo ();

}

if (X == a) {

 foo ();

} else if (Y == b) {

 foo ();

}

8.2 Outer Trigger Conditions

BOMBDROID first searches existing qualified conditions and
then constructs artificial ones for building bombs.

Existing qualified conditions. We use Soot [54] to generate
the CFG of each candidate method and locate all qualified
conditions that include equality checking; specifically, we
search for instructions containing IFEQ, IFNE, IF_ICMPEQ,
IF_ICMPNE, and TABLESWITCH. As a heuristic optimization,
we avoid inserting bombs into loops in a procedure.

Logic operations such as && or || combine more than one
simple condition. For logical and operators, e.g., if (X ==
a && Y == b), as both simple conditions (X == a, and Y
== b) must be satisfied to execute conditional code, either
of the two can serve as the outer condition.

For logical or operators, e.g., if (X == a || Y ==
b), as showed below, since either of the two simple con-
ditions may execute conditional code, we duplicate the
conditional code. This way, the payload can be injected into
either of the two branches.

Artificial qualified conditions. While medium and large
sized programs usually have many existing qualified con-
ditions, smaller programs may not. To solve the issue, we
choose to inject artificial ones. Specifically, α = 0.25 (α is
configurable) of the candidate methods are randomly picked
for inserting artificial qualified conditions. In each selected
method, a program location that is not in a loop of the
method is randomly chosen for inserting an artificial QC. At
each selected program location, we collect the possible values
that each accessible field takes through profiling; fields that
have the largest numbers of unique values are considered
to have higher entropies and are used to construct artificial
QCs. To construct an artificial QC, one of the field values is
randomly selected as the constant value.

8.3 Inner Trigger Conditions

Inner trigger conditions depend on environment variables.
We collect information about environment variables from
online resources. E.g., the Android official website maintains
a Dashboards page, which provides information about the
ratio of devices that share some property in terms of the OS
version, API level, or screen size [55]; AppBrain provides
statistics about manufacturers [56]. We also allow developers
to override the collected information; e.g., an app may be
used on tablets only or target users at specific countries.

Base on the information collected, we construct inner
trigger conditions, each of which will be satisfied at some
specific probability p. The probability range is customizable
by developers; in our implementation, p ∈ [0.1, 0.2]. E.g.,
when building an inner trigger condition that depends on
the IP address A.B.C.D, the condition 101 < C < 132 has
p = 30/256. Note that it does not mean that, given a device,
when an inner trigger condition is evaluated for 1/p times on
the device the bomb will be activated once; instead, the bomb
may never be activated on that device until the environment

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

condition is met. But when the condition is evaluated for 1/p
times under the diverse user environments, it is expected the
bomb gets activated once.

8.4 Hashing and Encryption

We use SHA-256 as the hash function and AES-128 for
encryption. We use key = Hash(c|S), where S is a salt,
to transform a constant value c with a various size into a
uniform 128-bit key (only using the first 128 bits of the hash
value) to be used for encryption.

8.5 Bytecode Instrumentation

We first use apktool [57] to unpack the APK file to
generate classes.dex and CERT.RSA (the latter is used
to extract the original public key using openssl). We then
use dex2jar [58] to convert classes.dex to a collection
of Java classes, which are used for instrumentation.

We leverage Javassist [59] for bytecode instrumenta-
tion. Javassist allows us to write the repackaging detection
code in Java (in the form of source code), and then compiles
the source code into bytecode on-the-fly during instrumenta-
tion. Note that the host app code used for the instrumentation
is a collection of Java classes; the advantage of Javassist is
that it allows the inserted detection code to be written in Java
and then it compiles the source code on-the-fly.

The generated code, after being mixed with part of the
original app code, is encrypted into a string, which is inserted
into the app code. Then during execution time, when a bomb
is triggered, the string will be decrypted and stored in a
separated .dex file, which is then loaded and invoked. Note
that ART supports dynamic loading of .dex files. There
definitely exist other ways to implement the system. For example,
the encrypted code can also be inserted into the .data section
of a shared library of the app. To make BOMBDROID work
for Android apps, during instrumentation, android.jar
is included into the build path, and all the packages that
payloads relying on such as PackageManager are imported.
Finally, after instrumentation, we use dx to convert the
modified Java classes into a new classes.dex, which is
then packed with other app resources into a protected app.
The protected app will be sent to the legitimate developer
to sign the app. Note that the private key is kept by the
legitimate developer and is not disclosed to BOMBDROID.

9 EVALUATION

We have applied BOMBDROID to a set of Android apps,
1,463 totally, downloaded from F-Droid [60]. We first present
statistics about the characteristics of the app programs
in Section 9.1, and then describe the measurement of the
effectiveness of our system. In Section 9.3, we measure the
resilience of logic bombs to adversary analysis. The overhead
data is presented in Section 9.4.

9.1 App Program Characteristics

Table 1 shows the static characteristics of the 1,463 apps in
the eight categories. For each category, it shows the number
of apps, the average number of lines of Java code (of apps in
the category), the average number of candidate methods, the
average number of existing qualified conditions used as outer

Dev
elo

pm
en

t

Sec
uri

ty

Mult
im

ed
ia

Nav
iga

tio
n

Writi
ng

Spo
rt&

Hea
lth

Scie
nc

e&
Edu

ca
tio

n
Gam

e

80

70

60

50

40

30

20

10

0

of

 a
pp

s

WM.isWifiEnabled()

Build.VERSION.SDK_INT
CM.getActiveNetworkInfo()
CM.isConnected()
getDisplayMetrics()
LM.getLastKnownLocation()
SM.getAltitude()
SystemClock.elapsedRealtime()
SystemClock.uptimeMillis()
WM.getWifiApState()

Fig. 3: The top ten most frequently referenced
environment variables. (Legend: CM, LM, SM, and WM
represent ConnectivityManager, LocationManager,
SensorManager, and WifiManager, respectively.)

trigger conditions, and the average number of environment
variables used by apps.

The first observation is that, unsurprisingly, larger-sized
programs tend to have a larger number of candidate methods
and existing qualified conditions. Note that BOMBDROID
allows to insert artificial QCs which can be used as outer
trigger conditions as well.

Figure 3 further shows the top ten most frequently
used environment variables (denoted by Android Frame-
work APIs) and, for each environment variable, the
number of apps in each category using that variable.
The most frequently referenced environment variable is
Build.VERSION.SDK_INT; 43% of the apps in our data
set use this variable, based on which apps can provide the
best features and functionalities across different platform
versions. 56% of the game apps read display metrics in order
to adjust app user interfaces according to screen density and
resolution. Almost half of the media apps request the state of
network connectivity and network configurations, e.g., the
connected network’s link speed, IP address, negotiation state,
etc., to control the usage of network resources and perform
network operations.

Overall, all the apps use environment variables (retrieved
through Android Framework APIs) and apps in the Multime-
dia category use the largest number of them on average. It
shows that the logic of Android apps is indeed environment
sensitive. In our constructed logic bombs, we use either
environment variables that do not need permissions or those
already used by the app itself, such that the protected app
does not need to request extra permissions.

To construct artificial QCs, program variables are used.
As an example, we visualize how program variables of
AndroFish change their values with time in Figure 4.
In the main interface, multiple fishes move around, and
players need to click these fishes to gain scores. The six
program variables in Figure 4 store different information of
the currently visible fish, such as its moving direction, width,
height, speed, and position. We use Dynodroid [27] to run
the app for an hour, and record program variable values
once per minute. It shows that while some variables have
many unique values, others take few different values. Plus,

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 1: Static characteristics.

Category # of apps Avg LOC Avg # of Avg # of existing Avg # of
candidate methods qualified conditions environment variables

Game 175 3,038 98 62 18
Science&Education 158 4,156 92 45 10

Sport&Health 147 5,405 108 38 10
Writing 219 7,159 159 65 7

Navigation 181 9,246 177 55 11
Multimedia 168 10,152 211 76 19

Security 212 11,044 232 83 13
Development 203 14,457 391 96 11

1.00

0.75

0.50

0.25

0.00

50250

30

20

10

25

20

15

10

50250

200

150

100

50

0

100000

75000

50000

25000

0

50250

160000

120000

80000

40000

0

dir

time

width height

speed posX posY

Fig. 4: Visualization of how the values of six program
variables of AndroFish vary with time. The x-axis and y-axis
represent the time (mins) and variable values, respectively.

TABLE 2: Injected logic bombs.
of # of existing # of artificial

App logic bombs qualified qualified
injected conditions conditions

AndroFish 67 36 31
Angulo 43 25 18

SWJournal 58 28 30
Calendar 104 63 41
BRouter 263 144 119

Binaural Beat 82 52 30
Hash Droid 65 37 28

CatLog 73 35 38

some variables change values randomly (e.g., posY), whereas
others have different values at different stages of the app
running (e.g., speed), and it takes time for such variables
to reach particular values, which implies that, for trigger
conditions that depend on such variables, a user (or attacker)
may take some particular time and input to activate them. It
illustrate the necessity of profiling program variable values.
We choose those with the largest numbers of unique values
to construct more resilient artificial qualified conditions.

Table 2 shows the number of injected bombs in eight
randomly selected apps from each of the eight categories.
For the sake of consistency, we use the eight apps to
demonstrate the evaluation results in the rest of the section.
Take AndroFish as an example; 67 bombs are injected into
the app totally, consisting of 36 bombs based on existing
qualified conditions and 31 on artificial ones.

9.2 Effectiveness

We next measure how soon repackaging detection is per-
formed when users run an app; i.e., how long it takes to

TABLE 3: Triggering the first logic bombs.

App Min time Max time Avg time Success
(sec) (sec) (sec) times

AndroFish 12 213 89 50/50
Angulo 17 778 125 50/50

SWJournal 8 369 93 50/50
Calendar 11 452 136 50/50
BRouter 23 590 142 50/50

Binaural Beat 9 241 75 50/50
Hash Droid 17 436 158 50/50

CatLog 26 522 164 50/50

trigger the first logic bomb. We use BOMBDROID to embed
logic bombs into the eight apps and repackage them. We let
four human testers play the repackaged apps; each tester
plays two apps on emulators. Each app is played until the
first logic bomb is triggered, and the time taken to trigger the
first bomb is recorded. Each app is measured for 50 times,
and the testers are asked to vary the emulator configurations
(device types, SDK versions, and CPU/ABI, etc.) between
the runs. The minimum/maximum time to trigger the first
logic bomb and the number of successful detection times (if
no bomb is triggered within 60 minutes it is considered as a
failure) are listed in Table 3.

The results are encouraging showing that users can be
quickly alerted when using a repackaged app. The response
time is as short as 8 seconds, while the maximum times to
trigger the first bombs are all within 13 minutes.

9.3 Resilience

Security analysis (see Section 6) of our approach has shown
that two types of attacks are more effective than others: brute
force attacks and fuzzing. We thus evaluated the resilience
to these attacks.

9.3.1 Resilience to Brute force Attacks

Given an outer trigger condition Hash(X) == Hc, attackers
may try to search the value of X from dom(X) that satisfies
the condition. To evaluate the resistance, we define three
levels of strength based on the type of the data used in the
condition. An obfuscation is considered strong, medium, or
weak if the qualified condition depends on string, integer,
or boolean constant values, respectively. Figure 5 shows the
analysis results on the eight apps. Figure 5a shows that a
high percentage of the existing QCs have a weak obfuscation.
Figure 5b shows that the artificial QCs all have medium
to strong obfuscations. Note that the number of artificial
qualified conditions are adjustable, so developers can insert
more artificial ones if they can afford a larger overhead.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

CatL
og

Has
h D

roi
d

Bina
ura

l B
ea

t

BRou
ter

Cale
nd

ar

SWJo
urn

al

Ang
ulo

And
roF

ish

120

100

80

60

40

20

0

of

 in
ne

r t
rig

ge
r c

on
di

tio
ns

Weak
Medium
Strong

CatL
og

Has
h D

roi
d

Bina
ura

l B
ea

t

BRou
ter

Cale
nd

ar

SWJo
urn

al

Ang
ulo

And
roF

ish

160

140

120

100

80

60

40

20

0

of

 c
on

di
tio

ns
Weak
Medium
Strong

(a) Existing qualified conditions

App

CatL
og

Has
h D

ro
id

Bina
ur

al
Bea

t

BRout
er

Cale
nd

ar

SW
Jo

ur
na

l

Ang
ulo

And
ro

Fis
h

300

250

200

150

100

50

0

D
at

a

Weak
Medium
Strong

CatL
og

Has
h D

roi
d

Bina
ura

l B
ea

t

BRou
ter

Cale
nd

ar

SWJo
urn

al

Ang
ulo

And
roF

ish

120

100

80

60

40

20

0

of

 c
on

di
tio

ns

Weak
Medium
Strong

(b) Artificial qualified conditions

Fig. 5: Strength of outer trigger conditions.

TABLE 4: Percentages of satisfied outer trigger conditions
(AH represents AndroidHooker).

App Monkey PUMA AH Dynodroid
AndroFish 28.4 31.3 32.8 35.8

Angulo 30.2 34.8 30.2 37.2
SWJournal 27.7 31.0 29.3 34.5
Calendar 31.7 35.6 33.7 38.5
BRouter 19.4 22.1 20.9 26.6

Binaural Beat 24.4 26.8 26.8 34.1
Hash Droid 29.2 33.8 32.3 38.5

CatLog 26.0 27.4 30.1 38.4

9.3.2 Resilience to Fuzzing and Human Analysis

We first measure the number of outer trigger conditions
satisfied during one hour analysis using state-of-the-art
Android fuzzing tools, including Monkey [61], PUMA [62],
AndroidHooker [63], and Dynodroid. Table 4 shows the
results. It can be observed that Dynodroid performed slightly
better than other tools.

We then look into the number of logic bombs triggered
(when both the outer trigger and inner trigger conditions
were met) by Dynodroid. Figure 6 visualizes the results with
each line corresponding to the percentage of triggered bombs
for one of the eight apps. It shows that in the first 5 minutes
a small number of bombs were triggered, and the growth
of the numbers slowed down quickly. After 35 minutes, all
apps did not have new bombs triggered. At most 6.4% bombs
were triggered during the analysis, which means that the
majority of bombs kept dormant, showing that the apps were
resilient to such attacks.

We next let four human analysts to manually run the
apps in order to trigger the survived bombs. They are skilled
in debugging and test input generators. Each analyst took
care of two apps and spent 20 hours on each one. They are
informed of the detailed implementation of BOMBDROID,
and allowed to apply any tools to assist investigation and
mutate environment variables’ values. The results show that
at most 9.3% bombs are triggered. Mutating environment
variables values is slightly helpful to trigger more bombs.
However, considering that there are hundreds of different envi-
ronment variables and each variable may have a large domain
(possible values), it is unknown how to mutate the environment
variable values effectively. For example, the number of possible
combinations of the MAC address and IP address is up to

60544842363024181261

40

35

30

25

20

15

10

5

�����������

�
��
���
���
��
��
��
��
��
��
��
�
��

���������
������
���������
��������
�������
�������������
����������
������

0

1

2

3

4

5

6

7

Fig. 6: Number of bombs triggered by Dynodroid in one hour.
Each of the eight apps has a line representing the percentage
of triggered bombs.

TABLE 5: Execution time overhead. For each app, we use
BOMBDROID to generate two protected apps based on
different types of payload inserted.

App Ta Payload Tb Overhead
(sec) (sec) (%)

AndroFish 124 type I 126 1.6
type I and II 127 2.4

Angulo 125 type I 127 1.6
type I and II 129 3.2

SWJournal 115 type I 118 2.6
type I and II 118 2.6

Calendar 148 type I 151 2.0
type I and II 153 3.3

BRouter 132 type I 135 2.3
type I and II 135 2.3

Binaural Beat 163 type I 166 1.9
type I and II 167 2.5

Hash Droid 155 type I 158 1.9
type I and II 160 3.2

CatLog 131 type I 134 2.3
type I and II 135 3.1

248 ∗ 232. It is essentially a type of brute force attacks, which
is too expensive and inefficient to be a feasible option.

9.4 Side Effects
The side effects of BOMBDROID on apps are measured in the
following three aspects: false positives, code size change, and
execution time overhead.

BOMBDROID implements two repackaging detection
methods (see Section 5), including detecting repackaged
apps (type I), and detecting repackaged apps with illegal
code modification (type II). The side effects vary based on
the number of logic bombs inserted and the types of the
detection code (payload) carried in the bombs.

Thus, for each app, we use BOMBDROID to generate two
protected apps: one is inserted with the type I payload only,
and another one is inserted with both type I (50%) and type II
(50%) payload.
False positives. As the response code injects difficult-to-
debug errors into program execution, it is critical to ensure
that such response code is never executed on apps that have
not been repackaged, i.e., ensuring zero false positives. We
thus run Dynodroid on each app protected by BOMBDROID

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

for ten hours, and log whether the response code is executed.
The results show that there were no false positives.
Code size change. For the apps inserted with the type I
payload only, the code size change ranges from 8% to 13%
and averages 9.7% among all the apps. For the apps inserted
with both the type I and type II payload, the code size change
ranges from 8.2% to 13.7% and averages 9.9% among all the
apps. The type I payload is slightly larger than the type II
payload.
Execution time overhead. To evaluate the execution time
overhead, we employ Dynodroid to generate a sequence
of 20,000 user events, and feed the same user events to
both the original and protected apps fifty times to measure
the average execution time. The average execution time of
the original app and protected app are denoted as Ta and
Tb respectively. The execution time overhead is calculated
as O = (Tb − Ta)/Ta. Table 5 shows the execution time
overheads, which are 3.3% at most. It can be seen that the
overhead is very small; moreover, the type II payload is
a little bit expensive compared to the type I payload. We
attribute the small overhead to three reasons: (1) the logic
bombs are not injected into hot methods, (2) the payloads are
not executed until the conditions are met, and (3) the code
decryption is one-time effort by caching it in memory.

9.5 User Study
For each original app, we use BOMBDROID to generate two
protected apps: one is inserted with the type I payload only,
and another one is inserted with both type I (50%) and type II
(50%) payload. Next, for each protected app, we modify its
code (e.g., inserting some simple code that prints a random
generated string), and then repackage it. Through this, we
have two repackaged apps for each original app, and 16
repackaged apps totally.

We next asked four human testers to play the repackaged
apps. Each tester plays four randomly assigned repackaged
apps, and each app is played for two hours. They are free to
choose any emulator configurations (e.g., device types, SDK
versions, and CPU/ABI, etc.) to install the apps. After that,
they report their feedback on playing these repackaged apps.

All of them report that it is beneficial to have more
fine-grained detection, i.e., to detect whether or not the
repackaged app’s code has been modified. They mentioned
that if they were only alerted that an app had been repack-
aged, they might not uninstall the app immediately as
some app even repackaged may not hurt their privacy; for
example, attackers may simply repackage an app to insert
ads or make profits without inserting malicious code to steal
sensitive information or launch attacks. However, if they
were informed that the app’s code had been modified, they
would promptly take down the app to protect themselves.
Therefore, it is very useful and beneficial to not only detect
whether an app has been repackaged, but also identify
whether the repackaged app’s code has been modified, such
that victim users can be informed clearly whether their
devices contain such high risk apps.

They also mention that it would be better if the detection
can further detect whether the code modification indeed
involves malicious code, instead of only notifying the app
code has been modified. Many malware detection techniques
can be adopted for this purpose [64], [65], [66], [67].

10 RELATED WORK

10.1 Malware Obfuscation

Obfuscation is a semantics-preserving transformation to
hinder figuring out the original form of the resulting
code [68], [69]. It has been widely used by malware to evade
detection [70], [71], [72], [73], [74], [75], [76], [77], [78], [79],
[80], [81], [82], [83], [84]. Malware obfuscation techniques
include encryption, polymorphism and metamorphism [85].
(a) An encrypted malware typically consists of a decryptor
and an encrypted main body [72], [75], [86]. Malware uses a
different key to make the encrypted main body unique; the
decryptor recovers the main body at runtime. However, the
problem is that the decryptor remains the same, making it
possible to detect malware based on the decryptor. (b) Poly-
morphic malware is capable of creating distinct decryptors
using obfuscation, such as junk code insertion, instruction
reordering, and register reassignment, etc. [71], [73], [74],
[83], [87]. However, the main body, after decryption, can still
be used for detection. (c) Metamorphism malware makes
use of various obfuscations, such as control-flow/data-flow
obfuscation techniques, to evolve its main body into new
generations, and thus is difficult to be detected even its main
body appears after decryption [82], [84]. We also encrypt
the logic bombs with varying keys, but the keys are not
embedded in the app code. Moreover, the strengthen of
our technique is not based on how well the logic bombs
are concealed; instead, we do not intentionally conceal the
locations of logic bombs, yet still achieve resilience to various
evasion attacks.

10.2 Repackaging Detection

The app repackaging problem has drawn efforts from
both industry and academia. Different app repackaging
detection techniques use different features and methods
for comparing the code between a large number of apps
to detect repackaging [3], [13], [15], [16], [88], [88], [89], [90],
[91], [92], [93], [94], [95], [96], [97], [98], [99]. For example,
Zhou et al. propose DroidMOSS, which uses hashing of app
instruction sequence to detect repackaging [15]. Potharaju et
al. uses program syntactic fingerprints to detect plagiarized
applications under different levels of obfuscations [16]. Chen
et al. use the program dependency graph as features to detect
repackaging [14]. AppInk [100] and DroidMarking [101]
inject watermarking into apps so that a trusted party with
the knowledge of watermarking can help detect repackag-
ing. Crussell et al. propose AnDarwin which is a scalable
approach based on clustering to detecting similar Android
apps using their semantic information [90]. Repackaging
detection techniques based on code similarity comparison
can be evaded by code obfuscations. Most of them rely
on a centralized effort to detect repackaging, and may be
imprecise when handling obfuscated apps.

BOMBDROID implements decentralized repackaging de-
tection, which adds repackaging detection into apps, such
that it becomes an inherent capacity of apps and does not
rely on a third party.. SSN [18] attempts to build repackaging
detection into the app code, but as detailed in Section 2.2, it is
vulnerable to a variety of attacks. BOMBDROID implements
the first resilient decentralized repackaging detection.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

10.3 Tamper-proofing Techniques
There are roughly three categories of tamper-proofing tech-
niques for preventing illegal code modification.
Self-Checksumming Based Approaches. Many tamper-
proofing techniques are based on computing checksums
of code segments [43], [102], [103], [104], [105], [106], [107].
Chang et al. define small pieces of code called guards, to
compute checksums over code fragments [43]; disabling the
protection requires all the guards to be disabled, making
it non-trivial for attackers. Horne et al. [108] extend this
technique and utilize testers and correctors that redundantly
test for changes in the executable code as it is running and
report modifications. Tsang et al. implement a large number
of lightweight protection units to protect critical regions
of a program from being modified [102]; this protection
scheme supports non-deterministic execution of functions,
resulting in different execution paths and nondeterministic
tamper responses. Jakubowski et al. present software in-
tegrity checking expressions, which are program predicates,
to dynamically check whether a program is in a valid
state [104]. Jakubowski et al. further propose a scheme to
transform programs into tamper-tolerant versions that use
self-correcting operation as a response against attacks [103];
it chops a program into blocks, which are duplicated,
individualized, and rearranged. Our technique does not rely
on code scanning.
Oblivious Hashing Based Approaches. Chen et al. propose
oblivious hashing that implicitly computes a hash value
based on the execution of the code to verify the runtime
behavior of the software [109]. Chen et al. then propose
a tamper-proofing software technology for stack-machine
based languages, such as Java, by improving oblivious
hashing [110]. It inserts hash instructions into basic blocks at
the bytecode level, to monitor the top of the stack and check
whether the program running has been tampered with or
not. It is unknown how this technique can detect mobile app
repackaging that does not tamper with the code.
Code Encryption and Decryption Based Approaches. Auc-
smith proposes an approach utilizing cryptographic methods
to decrypt and encrypt code blocks before and after each
execution round [23]. The decryption and encryption pro-
cedures are controlled by an integrity verification kernel,
which communicates with other code segments to create an
interlocking trust model. Wang et al. propose a dynamic
integrity verification mechanism to prevent modification
of software [25]. The mechanism utilizes multi-blocking
encryption technique to encrypt and decrypt code at runtime.
Cappaert et al. also propose an approach which enciphers
code at runtime, relying on other code as key informa-
tion [111]; this way, any tampering will cause the code to be
decrypted with a wrong key and produce incorrect code. Our
technique also employs cryptography, but it does not rely on
a modified kernel or code scanning, and keys to decrypt the
code are derived from the program inputs.

10.4 Logic Bombs
Various approaches have been proposed for discovering
trigger-based behaviors [30], [31], [32], [33], [36], [37], [112],
[113], [114], [115], [116]. Some techniques identify trigger-
based behavior by exploring paths during execution. Moser

et al. propose a system to explore multiple execution paths
of Window executables [29]. The system uses QEMU and
dynamic tainting to identify conditions whose outcome
depends on certain inputs, and attempts execution on both
branches by solving the path constraints. Symbolic execution
has been widely applied to deriving predicates leading to
specific execution paths. Crandall et al. propose an approach
to detect time bombs in Windows binaries by varying
time in a virtual machine and using symbolic execution
to identify conditions depending on time [32]. Bitscope
uses static analysis and symbolic execution to understand
the behavior of malware binaries [30]. MineSweeper utilizes
binary instrumentation and mixed concrete and symbolic
execution for detecting trigger-based behavior [31]. By com-
bining symbolic execution, path predicate reconstruction, and
control-dependency analysis, TriggerScope can identify
time-, location-, and SMS-related triggers in apps [33]. Our
obfuscation on trigger conditions makes the path constraints
unresolvable. HSOMINER [116] combines machine learning
and program analysis to discover hidden sensitive operations
in apps; however, it cannot handle trigger conditions that
involve program variables as in our bombs.

Some techniques try to circumvent trigger conditions and
directly execute payloads. Rasthofer et al. propose HARVESTER,
which performs backward program slicing starting from the
line of suspected code, and then executes the extracted slices
to uncover the payload behavior [36]. Wilhelm and Chiueh
propose a forced sampled execution approach that forces
execution along different paths [37]. As BOMBDROID applies
encryption on payloads, it is infeasible to directly execute
payload without discovering the key used for decryption.

Crane et al. propose the concept of “booby traps” [117],
which are only triggered to take effect when attacks are
detected; e.g., sending forged results to remote attackers. The
defense keeps dormant during normal executions. While
sharing the spirit of trigger-based defenses, they assume
attackers cannot tamper with the enhanced software, so the
problems we are solving are very different.

11 DISCUSSION

11.1 Preventing Abuse of Logic Bombs

From the perspective of the app store, the use of logic bombs
certainly increases the difficulty of security analysis of apps.
This may inspire malware authors to adopt the technique in
their malicious apps to fool malware scanning and analysis
by the app store. We propose that, for each app submitted to
the app store, the app authors should submit two versions of
the app, including an original version and the one enhanced
using BOMBDROID along with the keys, such that the app
store can easily verify the equivalence of the two versions,
and then proceed to scan and analyze the original version as
usual. Thus, this simple method prevents malware authors
from abusing the proposed technique, and it only requires
very little extra effort from app stores.

11.2 User-side Repackaging and Tampering Detection

When users use repackaged apps, they may experience pop-
up warnings, slowdown, and other negative user experiences.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

We consider this acceptable, as causing negative user experi-
ences is a common practice for handling pirated software in
the industry [118].

Second, we make use of user devices to detect repack-
aging and tampering, and software by many vendors like
Microsoft and Oracle also checks on the user side whether
the software is genuine or registered properly. Thus, this
should not raise an ethical concern.

11.3 Other Possible Attacks
During the analysis, whenever an outer trigger condition
is evaluated, the attacker may trace back to the source of
the variable used in that condition through backward data
flow analysis. If it is from an array of literals or the return
value of a system call, then the set of values taken by the
variable is largely reduced, which enables a more efficient
dictionary attack. However, if the data dependency is hard
to determine or the source is some input data from users,
such attacks are infeasible. Since we can construct artificial
qualified conditions as trigger conditions, we can use data
flow analysis and select program variables derived from
input data to be used in the conditions. Thus, although
such attacks are a threat to some of the existing qualified
conditions, they can be defeated by using artificial qualified
conditions. In addition, it is worth noticing that the encrypted
branch code of a logic bomb essentially has obfuscated the
data flow; thus, it is unknown how to perform backward
data flow analysis that involves multiple bombs in a path.

The attacker may run a repackaged app many times and
clone all the executed code. Specifically, given a logic bomb,
if it is triggered we assume the attacker can remove it from
the copied code; otherwise, the payload of the bomb is not
copied since it is not executed. The attacker may be able
to obtain a workable app without bombs eventually. This
attack may work if the attacker can achieve a high code
coverage. However, achieving a high code coverage has been
a well known challenge. For example, the initialization of an
app may check the user environments and takes different
paths under different environments. Without a decent code
coverage, the partially cloned app will cause program crashes
and other unexpected errors on the user side.

11.4 Limitations
It is widely recognized that any software-based protection
can be bypassed as long as attackers are determined enough
and willing to spend time and effort. This is also true
for BOMBDROID. We assume that attackers are interested
in repackaging apps only if it is cost-effective; e.g., when
the cost of repackaging is less than that of developing
apps from scratch. For example, although BOMBDROID has
good resiliency to many attacks, we admit that determined
attackers can crack the keys of bombs via, e.g., brute force
attacks. As we inject artificial qualified conditions, which
have medium to strong obfuscation strength, it is difficult
to enumerate all possible values. But understanding the
semantics of the app code can help reduce the number of
possible values and assist attackers to guess the keys.

11.5 Future Work
We regard this novel logic bomb based repackaging detection
approach as a malware-inspired defense. There are many

techniques that have been used by malware, such as data-
flow/control-flow obfuscation (which can make it is more
difficult to analyze the app code) and in-memory code
rewriting. We plan to explore how the techniques that
are widely used in malware can be used for repackaging
detection. For example, we plan to apply custom packers [119]
and data-flow obfuscations [120] to the logic bombs.

The use of the logic bomb structure certainly increases
the difficulty of security analysis of Android apps from
the perspective of the app store. This may inspire malware
authors to adopt the technique in their malicious apps. We are
working on an effective scheme that allows the app store to
check the submitted apps, such that the proposed technique
will not become new arms of attackers. A simplest design
would be to require app authors to submit two versions
of the app: an original app and one with the processing of
BOMBDROID, such that the app store can easily verify the
equivalence of the two apps, and then proceed to analyze
the security of the original app.

12 CONCLUSION

Application repackaging and tampering detection is an
important problem for protecting the IP rights of legitimate
developers and the security and privacy of app users. Build-
ing repackaging and tampering detection into apps brings
many advantages over the centralized scheme. However, the
challenge of making the detection code resilient to various
adversary analysis was not resolved in prior work.

We proposed a novel use of logic bombs to protect
repackaging detection code from attackers. Cryptographi-
cally obfuscated bombs are used to construct resilient bombs,
while double-trigger bombs achieve fine control of the
triggering of bombs. Each bomb includes (1) an outer trigger
condition that thwarts automatic path exploration, (2) an
environment-sensitive inner trigger condition that renders
fuzzing-based hacking ineffective, and (3) code weaving and
encryption that increase the difficulty of code understanding
and rewriting. We have comprehensively analyzed and
evaluated BOMBDROID. The analysis and evaluation results
show that the technique is efficient, effective and resilient.
We expect that our approach might benefit numerous honest
Android application developers.

ACKNOWLEDGMENTS

This project was supported by NSF CNS-1850278, NSF CNS-
1815144 and NSF CNS-1856380.

REFERENCES

[1] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient decentralized
android application repackaging detection using Logic Bombs,”
in IEEE/ACM International Symposium on Code Generation and
Optimization, 2018.

[2] Pocket Gamer, “Know thy enemy: Using data
to push back against app piracy,” 2018, https:
//www.pocketgamer.biz/comment-and-opinion/67583/
sponsored-using-data-against-app-piracy/.

[3] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on Android markets,” in ESORICS, 2012.

[4] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for evaluating
mobile app repackaging detection algorithms,” in Trust and
Trustworthy Computing, 2013.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

https://www.pocketgamer.biz/comment-and-opinion/67583/sponsored-using-data-against-app-piracy/
https://www.pocketgamer.biz/comment-and-opinion/67583/sponsored-using-data-against-app-piracy/
https://www.pocketgamer.biz/comment-and-opinion/67583/sponsored-using-data-against-app-piracy/

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[5] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy
enforcement for Android applications,” in USENIX Security, 2012.

[6] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,
“Androsimilar: Robust statistical feature signature for Android
malware detection,” in SIN, 2013.

[7] S. Liang and X. Du, “Permission-combination-based scheme for
android mobile malware detection,” in Communications (ICC), 2014
IEEE International Conference on. IEEE, 2014.

[8] L. Wu, X. Du, and J. Wu, “Mobifish: A lightweight anti-phishing
scheme for mobile phones,” in Computer Communication and
Networks (ICCCN), 2014 23rd International Conference on. IEEE,
2014.

[9] L. Wu, X. Du, and X. Fu, “Security threats to mobile multimedia
applications: Camera-based attacks on mobile phones,” IEEE
Communications Magazine, vol. 52, no. 3, 2014.

[10] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteriza-
tion and evolution,” in S&P, 2012.

[11] Y. Zhang, “Kemoge: Another mobile malicious adware infect-
ing over 20 countries,” 2015, https://www.fireeye.com/blog/
threat-research/2015/10/kemoge_another_mobi.html.

[12] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid:
Towards obfuscation-resilient mobile application repackaging
detection,” in WiSec, 2014.

[13] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp:
A scalable system for detecting code reuse among Android
applications,” in DIMVA, 2013.

[14] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scala-
bility simultaneously in detecting application clones on Android
markets,” in ICSE, 2014.

[15] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
CODASPY, 2012.

[16] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang, “Pla-
giarizing smartphone applications: attack strategies and defense
techniques,” in In Engineering Secure Software and Systems, 2012.

[17] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner, E. Athana-
sopoulos, F. Maggi, C. Platzer, S. Zanero, and S. Ioannidis,
“Andradar: fast discovery of android applications in alternative
markets,” in DIMVA, 2014.

[18] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing
android apps,” in DSN, 2016.

[19] R. D. Gopal and G. L. Sanders, “Preventive and deterrent controls
for software piracy,” Journal of Management Information Systems,
vol. 13, no. 4, pp. 29–47, 1997.

[20] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing
for security testing,” Queue, vol. 10, no. 1, p. 20, 2012.

[21] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[22] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based
testing tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597,
2009.

[23] D. Aucsmith, “Tamper resistant software: An implementation,” in
Information Hiding, 2005.

[24] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray, and X. Su,
“Identifying and understanding self-checksumming defenses in
software,” in Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy. ACM, 2015, pp. 207–218.

[25] P. Wang, S. kyu Kang, and K. Kim, “Tamper resistant software
through dynamic integrity checking,” in SCIS, 2005.

[26] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, 2013.

[27] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for Android apps,” in FSE, 2013.

[28] M. Zalewski, “merican Fuzzy Lop,” http://lcamtuf.coredump.cx/
afl/.

[29] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution
paths for malware analysis,” in S&P, 2007.

[30] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin, “BitScope: Automatically
dissecting malicious binaries,” in Tech. Rep. CMU-CS-07-133, 2007.

[31] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and
H. Yin, “Automatically identifying trigger-based behavior in
malware,” in Botnet Detection, 2008.

[32] J. R. Crandall, G. Wassermann, D. A. de Oliveira, Z. Su, S. F. Wu,
and F. T. Chong, “Temporal search: Detecting hidden malware
timebombs with virtual machines,” in ACM Sigplan Notices, 2006.

[33] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna, “TriggerScope: Towards detecting logic bombs in
android applications,” in S&P, 2016.

[34] L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang,
X. Xing, and P. Liu, “System service call-oriented symbolic
execution of android framework with applications to vulnerability
discovery and exploit generation,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services.
ACM, 2017, pp. 225–238.

[35] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16,
2016, pp. 1–16.

[36] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
runtime values in android applications that feature anti-analysis
techniques,” in NDSS, 2016.

[37] J. Wilhelm and T. cker Chiueh, “A forced sampled execution
approach to kernel rootkit identification,” in International Workshop
on Recent Advances in Intrusion Detection, 2007.

[38] kaspersky, “Rooting your Android: Advantages, disadvan-
tages, and snags,” 2017, https://www.kaspersky.com/blog/
android-root-faq/17135/.

[39] M. V. Wilkes, “Time-sharing computer systems,” 1972.
[40] K. derivation function, 2017, https://en.wikipedia.org/wiki/Key_

derivation_function.
[41] Z. Brakerski and G. N. Rothblum, “Virtual black-box obfuscation

for all circuits via generic graded encoding.” in TCC, vol. 8349,
2014, pp. 1–25.

[42] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation,” in NDSS, 2008.

[43] H. Chang and M. J. Atallah, “Protecting software code by guards,”
in Security and Privacy in Digital Rights Management, 2002.

[44] J. Fridrich, M. Goljan, and R. Du, “Detecting lsb steganography in
color, and gray-scale images,” IEEE multimedia, vol. 8, no. 4, pp.
22–28, 2001.

[45] Xposed, “Xposed Framework,” http://repo.xposed.info/.
[46] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, “Patchdroid:

Scalable third-party security patches for android devices,” in
Proceedings of the 29th Annual Computer Security Applications
Conference. ACM, 2013, pp. 259–268.

[47] V. Costamagna and C. Zheng, “Artdroid: A virtual-method
hooking framework on android art runtime.” in IMPS@ ESSoS,
2016.

[48] T. Ki, A. Simeonov, B. P. Jain, C. M. Park, K. Sharma, K. Dantu,
S. Y. Ko, and L. Ziarek, “Reptor: Enabling api virtualization on
android for platform openness,” in MobiSys, 2017.

[49] F. A. Brandolini, “Hooking java methods and native functions to
enhance android applications security,” Ph.D. dissertation, 2016.

[50] W. You, B. Liang, W. Shi, S. Zhu, P. Wang, S. Xie, and X. Zhang,
“Reference hijacking: Patching, protecting and analyzing on un-
modified and non-rooted android devices,” in Proceedings of the
38th International Conference on Software Engineering. ACM, 2016,
pp. 959–970.

[51] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. v. Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock an-
droid,” in Proceedings of Usenix Security, 2015.

[52] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “Njas: Sand-
boxing unmodified applications in non-rooted devices running
stock android,” in Proceedings of the 5th Annual ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices. ACM,
2015, pp. 27–38.

[53] Traceview, 2017, http://developer.android.com/tools/help/
traceview.html.

[54] Soot, 2017, http://sable.github.io/soot/.
[55] Dashboards, “http://developer.android.com/about/dashboards/

index.html,” 2017.
[56] Top Manufacturers, 2017, http://www.appbrain.com/stats/

top-manufacturers.
[57] Apktool, 2017, https://ibotpeaches.github.io/Apktool/.
[58] dex2jar, 2017, https://github.com/pxb1988/dex2jar.
[59] Javassist, 2017, http://jboss-javassist.github.io/javassist/.
[60] F-Droid, “Free and Open Source Software Apps for Android,”

2017, https://f-droid.org/.
[61] UI/Application Exerciser Monkey, 2017, http://developer.

android.com/tools/help/monkey.html.
[62] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:

programmable UI-automation for large-scale dynamic analysis

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

https://www.fireeye.com/blog/threat-research/2015/10/kemoge_another_mobi.html
https://www.fireeye.com/blog/threat-research/2015/10/kemoge_another_mobi.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.kaspersky.com/blog/android-root-faq/17135/
https://www.kaspersky.com/blog/android-root-faq/17135/
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
http://repo.xposed.info/
http://developer.android.com/tools/help/traceview.html
http://developer.android.com/tools/help/traceview.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.appbrain.com/stats/top-manufacturers
http://www.appbrain.com/stats/top-manufacturers
https://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
https://f-droid.org/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

of mobile apps,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, 2014.

[63] AndroidHooker, 2016, https://github.com/AndroidHooker.
[64] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:

scalable and accurate zero-day android malware detection,” in
Proceedings of the 10th international conference on Mobile systems,
applications, and services. ACM, 2012, pp. 281–294.

[65] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droid-
mat: Android malware detection through manifest and api calls
tracing,” in Information Security (Asia JCIS), 2012 Seventh Asia Joint
Conference on. IEEE, 2012, pp. 62–69.

[66] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in Proceed-
ings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices. ACM, 2011, pp. 15–26.

[67] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “DREBIN: Effective and explainable detection of
android malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–
26.

[68] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” Department of Computer Science,
The University of Auckland, New Zealand, Tech. Rep., 1997.

[69] A. Balakrishnan and C. Schulze, “Code obfuscation literature
survey,” CS701 Construction of compilers, vol. 19, 2005.

[70] M. Christodorescu and S. Jha, “Static analysis of executables to
detect malicious patterns,” WISCONSIN UNIV-MADISON DEPT
OF COMPUTER SCIENCES, Tech. Rep., 2006.

[71] M. Stamp and W. Wong, “Hunting for metamorphic engines,”
Journal in Computer Virology, vol. 2, no. 3, 2006.

[72] M. Schiffman, “A brief history of malware obfus-
cation,” Available on: http://blogs. cisco. com/securi-
ty/a_brief_history_of_malware_obfuscation_ part_1_of_2, 2010.

[73] E. Konstantinou and S. Wolthusen, “Metamorphic virus: Analysis
and detection,” Royal Holloway University of London, vol. 15, p. 15,
2008.

[74] B. B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in malware:
from encryption to metamorphism,” International Journal of Com-
puter Science and Network Security, vol. 12, no. 8, pp. 74–83, 2012.

[75] X. Jiang and Y. Zhou, “Dissecting android malware: Character-
ization and evolution,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 95–109.

[76] D. Baysa, R. M. Low, and M. Stamp, “Structural entropy and
metamorphic malware,” Journal of computer virology and hacking
techniques, vol. 9, no. 4, pp. 179–192, 2013.

[77] F. Daryabar, A. Dehghantanha, and H. G. Broujerdi, “Investigation
of malware defence and detection techniques,” International Journal
of Digital Information and Wireless Communications (IJDIWC), vol. 1,
no. 3, pp. 645–650, 2011.

[78] C. Yan and M. Wu, “An executable file encryption based scheme
for malware defense,” in Intelligent Systems and Applications, 2009.
ISA 2009. International Workshop on. IEEE, 2009, pp. 1–5.

[79] K. Kaushal, P. Swadas, and N. Prajapati, “Metamorphic malware
detection using statistical analysis,” International Journal of Soft
Computing and Engineering (IJSCE), vol. 2, no. 3, pp. 49–53, 2012.

[80] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack: Fast,
generic, and safe unpacking of malware,” in Computer Security
Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual.
IEEE, 2007, pp. 431–441.

[81] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur,
M. Conti, and M. Rajarajan, “Android security: a survey of issues,
malware penetration, and defenses,” IEEE communications surveys
& tutorials, vol. 17, no. 2, pp. 998–1022, 2015.

[82] M. Musale, T. H. Austin, and M. Stamp, “Hunting for metamor-
phic javascript malware,” Journal of Computer Virology and Hacking
Techniques, vol. 11, no. 2, pp. 89–102, 2015.

[83] S. Cesare, Y. Xiang, and W. Zhou, “Malwise—an effective and effi-
cient classification system for packed and polymorphic malware,”
IEEE Transactions on Computers, vol. 62, no. 6, pp. 1193–1206, 2013.

[84] Q. Zhang and D. S. Reeves, “Metaaware: Identifying metamorphic
malware,” in Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual. IEEE, 2007, pp. 411–420.

[85] I. You and K. Yim, “Malware obfuscation techniques: A brief
survey,” in Broadband, Wireless Computing, Communication and
Applications (BWCCA), 2010 International Conference on. IEEE,
2010, pp. 297–300.

[86] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted
and packed malware,” IEEE Security & Privacy, vol. 5, no. 2, 2007.

[87] S. Cesare and Y. Xiang, “A fast flowgraph based classification
system for packed and polymorphic malware on the endhost,”
in Advanced Information Networking and Applications (AINA), 2010
24th IEEE International Conference on. IEEE, 2010, pp. 721–728.

[88] S. Yue, W. Feng, J. Ma, Y. Jiang, X. Tao, C. Xu, and J. Lu,
“Repdroid: an automated tool for android application repackaging
detection,” in Proceedings of the 25th International Conference on
Program Comprehension. IEEE Press, 2017.

[89] K. Tian, D. Yao, B. G. Ryder, and G. Tan, “Analysis of code
heterogeneity for high-precision classification of repackaged
malware,” in Security and Privacy Workshops (SPW), 2016 IEEE.
IEEE, 2016, pp. 262–271.

[90] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection
of semantically similar android applications,” in ESORICS, 2013.

[91] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of “piggybacked” mobile applications,” in CODASPY,
2013.

[92] L. Malisa, K. Kostiainen, M. Och, and S. Capkun, “Mobile
application impersonation detection using dynamic user interface
extraction,” in ESORICS, 2016.

[93] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid:
Towards obfuscation-resilient mobile application repackaging
detection,” in Proceedings of the 2014 ACM conference on Security
and privacy in wireless & mobile networks. ACM, 2014, pp. 25–36.

[94] W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han, “Migdroid:
Detecting app-repackaging android malware via method invoca-
tion graph,” in Computer Communication and Networks (ICCCN),
2014 23rd International Conference on. IEEE, 2014, pp. 1–7.

[95] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: a scalable and
accurate two-phase approach to android app clone detection,” in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis. ACM, 2015, pp. 71–82.

[96] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards
a scalable resource-driven approach for detecting repackaged
android applications,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 56–65.

[97] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and
E. Moser, “Fsquadra: fast detection of repackaged applications,”
in IFIP Annual Conference on Data and Applications Security and
Privacy. Springer, 2014, pp. 130–145.

[98] C. Yuan, S. Wei, C. Zhou, J. Guo, and H. Xiang, “Scalable and
obfuscation-resilient android app repackaging detection based on
behavior birthmark,” in Asia-Pacific Software Engineering Conference
(APSEC), 2017 24th. IEEE, 2017, pp. 476–485.

[99] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
repackaged android malware with code-heterogeneity features,”
IEEE Transactions on Dependable and Secure Computing, 2017.

[100] W. Zhou, X. Zhang, and X. Jiang, “Appink: watermarking android
apps for repackaging deterrence,” in ASIA CCS, 2013.

[101] C. Ren, K. Chen, and P. Liu, “Droidmarking: Resilient software
watermarking for impeding Android application repackaging,” in
ASE, 2014.

[102] H. chung Tsang, M.-C. Lee, and C.-M. Pun, “A robust anti-tamper
protection scheme,” in ARES, 2011.

[103] M. H. Jakubowski, N. Saw, and R. Venkatesan, “Tamper-tolerant
software: Modeling and implementation,” in IWSEC, 2009.

[104] M. H. Jakubowski, P. Naldurg, V. Patankar, and R. Venkatesan,
“Software integrity checking expressions (ICEs) for robust tamper
detection,” in Information Hiding, 2007.

[105] J. T. Giffin, M. Christodorescu, and L. Kruger, “Strengthening
software self-checksumming via self-modifying code,” in Computer
Security Applications Conference, 21st Annual. IEEE, 2005, pp. 10–
pp.

[106] G. Wurster, P. C. Van Oorschot, and A. Somayaji, “A generic attack
on checksumming-based software tamper resistance,” in Security
and Privacy, 2005 IEEE Symposium on. IEEE, 2005, pp. 127–138.

[107] P. A. Cronce, “Method for runtime code integrity validation using
code block checksums,” 2005, uS Patent 6,880,149.

[108] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic
self-checking techniques for improved tamper resistance,” in
Proceedings of the 1st ACM Workshop on Digital Rights Management
(DRM), 2002.

[109] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H.
Jakubowski, “Oblivious hashing: A stealthy software integrity
verification primitive,” in Information Hiding, 2002.

[110] H.-Y. Chen, T.-W. Hou, and C.-L. Lin, “Tamper-proofing basis path
by using oblivious hashing on Java,” in Information Hiding, 2007.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

https://github.com/AndroidHooker

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2957787, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[111] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and K. D.
Bosschere, “Towards tamper resistant code encryption: Practice
and experience,” in ISPEC, 2008.

[112] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in International Workshop on
Recent Advances in Intrusion Detection, 2011.

[113] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and
G. Vigna, “Efficient detection of split personalities in malware,” in
NDSS, 2010.

[114] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications,” in Proceedings of the second
ACM workshop on Security and privacy in smartphones and mobile
devices, 2012.

[115] C. Song, P. Royal, and W. Lee, “Impeding automated malware
analysis with environment-sensitive malware.” in HotSec, 2012.

[116] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard:
Learning-based, large-scale discovery of hidden sensitive opera-
tions in android apps,” in NDSS, 2017.

[117] S. Crane, P. Larsen, S. Brunthaler, and M. Franz, “Booby trapping
software,” in Proceedings of the 2013 New Security Paradigms
Workshop, ser. NSPW ’13, 2013, pp. 95–106.

[118] J. DAVIS, “Eight of the most hilarious anti-piracy measures in
video games,” 2013, https://www.ign.com/articles/2013/04/29/
eight-of-the-most-hilarious-anti-piracy-measures-in-video-games.

[119] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok:
Deep packer inspection: A longitudinal study of the complexity
of run-time packers,” in Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015, pp. 659–673.

[120] A. Majumdar, S. J. Drape, and C. D. Thomborson, “Slicing
obfuscations: design, correctness, and evaluation,” in Proceedings
of the 2007 ACM workshop on Digital Rights Management. ACM,
2007, pp. 70–81.

Qiang Zeng is an Assistant Professor at University of South Carolina. He
received his bachelor’s and Master’s degrees from Beihang University,
and his Ph.D. degree from the Pennsylvania State University in 2014. His
research interests are software and system security.

Lannan Luo is an Assistant Professor at University of South Carolina.
She received received her BS degree from Xidian University in 2009,
MS degree from the University of Electronic Science and Technology of
China in 2012, and PhD degree from the Pennsylvania State University
in 2017. Her research interests are software and system security.

Zhiyun Qian is an associate professor at University of California, River-
side. He received his PhD from University of Michigan, Ann Arbor. His
research interest is on system and network security, including vulnerability
discovery, applied program analysis, system building, Internet security
(e.g., TCP/IP), and Android security. His research has resulted in real-
world impact on the design and implementation of Linux kernel, Android,
macOS, and firewall products. He is a recipient of the NSF CAREER
Award, Applied Networking Research Prize 2019, Facebook Internet
Defense Prize Finalist 2016.

Xiaojiang Du is a professor in the Department of Computer and Informa-
tion Sciences at Temple University, Philadelphia, USA. Dr. Du received his
B.S. and M.S. degree in electrical engineering from Tsinghua University,
Beijing, China in 1996 and 1998, respectively. He received his M.S. and
Ph.D. degree in electrical engineering from the University of Maryland
College Park in 2002 and 2003, respectively. His research interests
are security, wireless networks, and systems. He has authored over
300 journal and conference papers in these areas, as well as a book
published by Springer. Dr. Du has been awarded more than $6 million
US dollars research grants from the US National Science Foundation
(NSF), Army Research Office, Air Force Research Lab, NASA, Qatar, the
State of Pennsylvania, and Amazon. He won the best paper award at
IEEE GLOBECOM 2014 and the best poster runner-up award at the ACM
MobiHoc 2014. He serves on the editorial boards of three international
journals. Dr. Du is a Senior Member of IEEE and a Life Member of ACM.

Zhoujun Li received the M.Sc. and Ph.D. degrees in computer science
from the National University of Defense Technology, China, in 1984
and 1999, respectively. Since 2001, he has become a Pro- fessor with
the School of the Computer, Beihang University. He has published
more than 150 papers on international journals, such as TKDE, Infor-
mation Science, and Information Processing and Management, and
international conferences such as SIGKDD, ACL, SIGIR, AAAI, IJCAI,
SDM, CIKM, and WSDM. His research interests include the data mining,
information retrieval, and database. He is a PC Member of many
international conferences, such as SDM2015, CIKM2013, WAIM2012,
and PRICAI2012.

Chin-Tser Huang received the BS degree in computer science and
information engineering from the National Taiwan University, Taipei,
Taiwan in 1993, and the MS and PhD degrees in computer sciences from
the University of Texas at Austin in 1998 and 2003, respectively. He joined
the faculty at the University of South Carolina in Columbia in 2003 and is
now a Professor in the Department of Computer Science and Engineering.
His research interests include network security, network protocol design
and verification, cloud computing, and distributed systems. He is the
director of the Secure Protocol Implementation and Development (SPID)
Laboratory at the University of South Carolina. He is the author (along
with Mohamed Gouda) of the book Hop Integrity in the Internet, published
by Springer in 2005. He is a recipient of the USAF Summer Faculty
Fellowship Award and the AFRL Visiting Faculty Research Program
Award in 2008-2019. He is a senior member of IEEE and a senior member
of ACM.

Csilla Farkas is a Professor in the Department of Computer Science
and Engineering and Director of the Center for Information Assurance
Engineering at the University of South Carolina. Dr. Farkas’ research
interests include information security, data inference problem, financial
and legal analysis of cyber crime, and security and privacy on the
Semantic Web. She is a recipient of the National Science Foundation
Career award. The topic of her award is “Semantic Web: Interoperation
vs. Security – A New Paradigm of Confidentiality Threats.” Dr. Farkas
actively participates in international scientific communities as program
committee member and reviewer.

Csilla Farkas received her PhD from George Mason University,
Fairfax. In her dissertation she studied the inference and aggregation
problems in multilevel secure relational databases. She received a MS
in computer science from George Mason University and BS degrees in
computer science and geology from SZAMALK, Hungary and Eotvos
Lorand University, Hungary, respectively.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 21,2020 at 01:14:19 UTC from IEEE Xplore. Restrictions apply.

https://www.ign.com/articles/2013/04/29/eight-of-the-most-hilarious-anti-piracy-measures-in-video-games
https://www.ign.com/articles/2013/04/29/eight-of-the-most-hilarious-anti-piracy-measures-in-video-games

