
Attacking Graph-Based Classification without Changing
Existing Connections

Xuening Xu
Temple University

Philadelphia, PA, USA
xuening.xu@temple.edu

Xiaojiang Du
Temple University

Philadelphia, PA, USA
dux@temple.edu

Qiang Zeng
University of South Carolina

Columbia, SC, USA
ZENG1@cse.sc.edu

ABSTRACT
In recent years, with the rapid development of machine learning in
various domains, more and more studies have shown that machine
learning models are vulnerable to adversarial attacks. However,
most existing researches on adversarial machine learning study
non-graph data, such as images and text. Though some previous
works on graph data have shown that adversaries can make graph-
based classification methods unreliable by adding perturbations
to features or adjacency matrices of existing nodes, these kinds
of attacks sometimes have limitations for real-world applications.
For example, to launch such attacks in real social networks, the
attacker cannot force two good users to change (e.g., remove) the
connection between them, which means that the attacker can not
launch such attacks. In this paper, we propose a novel attack on
collective classification methods by adding fake nodes into existing
graphs. Our attack is more realistic and practical than the attack
mentioned above. For instance, in a real social network, an attacker
only needs to create some fake accounts and connect them to ex-
isting users without modifying the connections among existing
users. We formulate the new attack as an optimization problem and
utilize a gradient-based method to generate edges of newly added
fake nodes. Our extensive experiments show that the attack can
not only make new fake nodes evade detection, but also make the
detector misclassify most of the target nodes. The proposed new
attack is very effective and can achieve up to 100% False Negative
Rates (FNRs) for both the new node set and the target node set.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Adversarial machine learning, adversarial graph-based classifica-
tion, AI security
ACM Reference Format:
Xuening Xu, Xiaojiang Du, and Qiang Zeng. 2020. Attacking Graph-Based
Classification without Changing Existing Connections. In Annual Computer
Security Applications Conference (ACSAC 2020), December 7–11, 2020, Austin,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427245

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3427228.
3427245

1 INTRODUCTION
Graph data is ubiquitous for many real-world applications, such as
biological networks, social networks and communication networks.
One of the most important tasks on graph data is the classification
of nodes, which is critical to security analysis, such as malware
detection, Sybil detection and malicious website detection.

Given a graph and a subset of nodes associated with labels, which
is called a training dataset, a node classification method is used
to predict labels for the rest of the unlabeled nodes. The training
dataset includes some labeled positive nodes and labeled negative
nodes, serving as pre-knowledge for the classification method. A
node with a positive label means the node is malicious, and a node
with a negative label means benign. For instance, in social networks,
a positive node represents a fraudulent user and a negative node
represents a normal user.

Node classification methods can be divided into two categories:
graph neural networks (GNNs) [4, 6, 13, 16, 24–26, 32, 40, 42] and
collective classification [3, 5, 10, 12, 14, 19, 20, 22, 23, 28, 31, 38, 41].
Graph neural networks are deep learning based methods, tailored
for graph data and proposed to collectively gather information
from graph structure. GNNs extract features for nodes in the graph
and utilize these features to do the classification task on nodes. In
contrast, collective classification methods are based on belief propa-
gation algorithms. At the very beginning, a collective classification
method assigns a prior reputation score for each node according
to the training dataset and also associates edges with some proper
weights. Then it starts to propagate the prior reputation scores via
weighted edges to get a posterior reputation score for each node in
the graph. Eventually, the collective classification method classifies
these nodes based on the calculated posterior reputation scores.
Prior work [36] shows collective classification outperforms GNNs
for some security and privacy problems. Besides, collective classi-
fication methods were deployed in industry for different security
tasks, such as fraudulent user detection in social networks [3, 5]
and malware detection [7, 31].

While most existing researches on adversarial machine learning
study non-graph data, such as images and audios [27, 43, 46, 47],
some recent works show that node classification methods are also
vulnerable to adversarial attacks, which implies these classifica-
tion methods become unreliable and could misclassify nodes un-
der some intentional and designed attacks. These recent works
[2, 9, 29, 34, 44, 45] mainly focused on manipulating the graph
structure by inserting new edges or deleting existing edges. How-
ever, such attacks have limitations, e.g., deleting an existing edge

https://doi.org/10.1145/3427228.3427245
https://doi.org/10.1145/3427228.3427245
https://doi.org/10.1145/3427228.3427245

ACSAC 2020, December 7–11, 2020, Austin, USA Xuening Xu, Xiaojiang Du, and Qiang Zeng

between two nodes requires at least one of nodes to be a malicious
node. That is, the attacker cannot force two good nodes (not being
compromised) to delete the edge between them. In [39], the authors
considered an attack on graph convolutional networks (GCNs) by
adding fake nodes to the graph. Targeting GNNs, [30] formulated
the fake node injection problem as a Markov decision process and
utilized Q-learning algorithm to address this problem. However,
they did not explore such an attack (adding new nodes) on collective
classification methods.

In this paper, we propose a new attack targeted at a collective
classification method named Linearized Loopy Belief Propagation
(LinLBP), which was also explored in [15, 34, 35, 37, 38]. LinLBP
addresses the limitations on convergence and scalability that LBP
suffers. Besides, it is more accurate and more robust than other
state-of-art collective classification methods, such as Random Walk
based methods and LBP-based methods[37]. We assume that an
attacker has the ability to create/insert a number of new (fake)
nodes and then link them to existing nodes, without modifying the
existing edges in the original graph. This assumption is reasonable.
For example, in social networks such as Facebook and Twitter, an
attacker can create multiple new (fake) accounts, and then connect
themwith existing accounts. Actually, these kinds of attacks happen
every day. The attacker chooses a group of target nodes in the
original graph, and the goal of the attacker is to make LinLBP
misclassify the new fake nodes, as well as the chosen target nodes
(e.g., existing malicious nodes), i.e., label them as negative rather
than positive. To be more formal, the attacker aims to achieve a high
False Negative Rate (FNR) on these nodes to evade detection. Note
that the new attack we propose here does not need to modify any
existing edges among existing nodes in the original graph, which
means that it may be easier and more feasible for an attacker to
implement this attack in real-world applications.

In this paper, we formulate the new attack as a constrained
optimization problem. The objective function is the total cost of
creating fake nodes and connecting them to existing nodes. The
constraints are FNR=1 for the new fake nodes and the target nodes.
Note that the solution for each fake node is to decide whether it
should link to an existing node or not, so the variables in this opti-
mization problem are all binary. Besides, because the constraints
are highly nonlinear, we use a similar approach as in [34] to relax
the constraints and approximately solve the proposed optimization
problem. Specifically, we temporarily relax binary variables to con-
tinuous variables and add the highly nonlinear constraints into the
objective function using Lagrangian multipliers. Our experiments
on real-world graphs show that our attack can make all new nodes
evade detection and also make LinLBP misclassify most of the tar-
get nodes. Moreover, our attack performs well even if the attacker
lacks full knowledge of LinLBP or the training dataset.

Our contributions are summarized as follows:

• We design an attack aimed at the collective classification
method by adding new fake nodes to a graph without modi-
fying any existing edges in the original graph.

• We propose a threat model and formulate our attack as an
optimization problem and use an effective solution to solve
the problem.

• We evaluate our attack on real-world graphs, and the new
attack turns out to be effective even if the attacker only has
partial knowledge.

The rest of the paper is organized as follows. Section 2 includes
a brief literature review of related work and the background about
Linearized Loopy Belief Propagation. In Section 3, we introduce
the threat model and describe the attack scenario. In Section 4, we
formulate the problem as an optimization problem and show the
detail of our attack design. Section 5 presents the evaluation of our
attack on real-world graphs. We conclude in Section 6.

2 RELATEDWORK AND BACKGROUND
2.1 Node Classification Methods
2.1.1 Graph Neural Network. Graph neural networks (GNNs) are
deep learning based methods that have been widely applied to
the graph domain. GNNs are motivated by convolutional neural
networks (CNNs) [17], which can extract spatial features and uti-
lize them to construct a highly expressive form of representations.
GNNs learn the representation of graph nodes as feature vectors
and use them to operate node classification.

Some graph neural network methods [6, 13, 25, 32, 42] first do
the graph embedding, which aims to represent graph nodes as low-
dimensional vectors while maintaining graph topology structure
and node information. Then, some simple off-the-shelf machine
learning algorithms can be applied to perform node classification,
i.e., predict labels for the unlabeled nodes. For example, DeepWalk
[25] obtains local information from truncated random walks and
then takes sequences of walks as the equivalent of sentences in
natural language to learn representations of nodes, utilizing the
Skip-gram model [21].

Other graph neural network methods [4, 16, 26] solve graph
tasks in the manner of end-to-end. The architecture of the neural
network varies according to the graph structure. A neuron connect-
ing to the neurons in the previous layer simulates a node linking
its neighbors. These neurons in the hidden layers stand for feature
vectors of nodes, which are iteratively computed by aggregating
feature vectors of their neighbors. Finally, feature vectors are used
to classify nodes in the last layer of the neural network. For instance,
Graph Convolutional Network (GCN) [16] utilizes a first-order ap-
proximation of spectral convolutions on graphs to learn feature
vectors in a neural network, and uses logistic regression classifiers
to perform classification.

2.1.2 Collective Classification. Collective classification makes joint
classifications of connected nodes to address node classification
tasks. Given a graph dataset, collective classification methods define
a prior reputation score for each node and then assign weights
for edges in the graph. After that, the prior reputation scores are
propagated along the edges to compute posterior reputation scores
for nodes. Finally, the posterior reputation scores are used to classify
unlabeled nodes. Different strategies can be applied for defining
prior reputation scores, assigning weights, or propagating prior
reputation scores. For instance, some methods use loopy belief
propagation (LBP) to propagate prior reputation scores among the
graphs, while others utilize random walks for propagation.

Attacking Graph-Based Classification without Changing Existing Connections ACSAC 2020, December 7–11, 2020, Austin, USA

LBP-based methods [10, 12, 19, 23, 31, 38] utilize both labeled
positive and labeled negative nodes in the training dataset to define
prior reputation scores. In terms of weight, LBP-based methods
usually set the same weight for all edges. For the propagation phase,
a standard LBP or a variant version of LBP is used for computing
posterior reputation scores. Nevertheless, LBP suffers limitations
on convergence and scalability. Recently, some works [15, 37, 38]
address these limitations by linearizing LBP to obtain a Linearized
LBP (LinLBP).

RandomWalk based methods [3, 5, 14, 20, 41] assign prior reputa-
tion scores to labeled nodes, which are used in the training dataset.
Similar to LBP-based methods, most random walk based methods
assign a constant weight for all edges in the graph. Besides, weights
also can be learned by using features of nodes [3]. Random walks
distribute the reputation score of a node to neighbors based on the
weight distribution of its edges, and each of the neighbors sums
the received reputation scores as the new reputation score.

2.2 Linearized Loopy Belief Propagation
Here, we introduce Linearized Loopy Belief Propagation [38] and
describe how this classification method works. Given a graph 𝐺 =

(𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of edges. We
denote |𝑉 | and |𝐸 | as the number of nodes and edges, respectively.
A training dataset 𝐷 contains labeled positive nodes and labeled
negative nodes. For each node 𝑢 ∈ 𝑉 in graph 𝐺 , LinLBP assigns a
prior reputation score according to the following:

𝑞𝑢 =

\, 𝑢 is positive

−\, 𝑢 is negative
0, Otherwise

(1)

where 0 < \ < 0.5 [38]. LinLBP calculates the posterior scores in
the following way:

p = q + A ⊙ Wp (2)
where p and q are |𝑉 | × 1 column vectors of posterior reputation
scores and prior reputation scores, respectively. W is a |𝑉 | × |𝑉 |
matrix and each entry is the weight 𝑤 (between (0, 0.5]) for the
corresponding edge. The larger the value of𝑤 , the higher the possi-
bility that the two connected nodes have the same label. We denote
A as the adjacency matrix of graph 𝐺 . Calculating posterior repu-
tation scores is an iterative process until the posterior reputation
scores converge. After convergence, a node with posterior reputa-
tion score 𝑝𝑢 > 0 is positive, i.e., it’s a malicious node. The larger
the value, the higher confidence that it is a malicious node.

2.3 Adversarial Machine Learning on Graphs
The past few years have seen rapid progress in adversarial machine
learning, but existing studies on this field mainly focus on non-
graph data, such as image and text. Only a few works [2, 8, 9, 29, 33,
34, 39, 44, 45] considered the adversarial scenario over graph-based
machine learning. Some of them proposed attacks via manipulating
the graph structure, e.g., inserting new edges or deleting existing
edges, targeting either collective classification methods [34] or
graph neural network methods [2, 9, 29, 44, 45]. For instance, Wang
et al. [34] proposed an attack to change connection status among
nodes. To this end, they formulated their attack as an optimization
problem and solved the problem by minimizing the total cost of an

attacker’s operations. In [39], aiming at GCNs, Wang et al. used a
greedy algorithm to add fake nodes into a graph to conduct fake
node attacks. Another recent work [30] proposed node injection
attacks to poison the training graph used by GNNs, in order to
reduce classification accuracy of GNNs on the unlabeled nodes. To
achieve that, they used a deep hierarchical reinforcement learning
based method to launch these attacks.

In this paper, we target LinLBP, a collective classification method,
to launch attacks by adding fake nodes without modifying existing
edges. Our attack is designed for collective classification and can
be seen as a complement to previous works, which aimed at graph
neural networks.

3 MODEL SETUP
In this section, we present the threat model, which includes the
attacker’s knowledge, capability, and goal. Also, we will describe
our new attack.

3.1 Threat Model
For a given graph, a LinLBP system is defined by a chosen training
dataset and weights of edges among nodes. The training dataset
acts as prior knowledge for LinLBP and it has a potential impact on
the posterior reputation scores after the propagation process. The
value of edge weight indicates the degree of influence of neighbors,
and it affects the posterior reputation scores during each iteration
until convergence. The attacker’s knowledge may be classified
based on the following two things: training dataset and weight.
An attacker with full knowledge means that the attacker knows
both the training dataset and the weight of LinLBP. Sometimes
the attacker does not have full access to the training dataset, i.e.,
the attacker only has partial training dataset to launch the attack,
which may still be effective. If an attacker has no idea of the LinLBP
weight, a substitute weight may be used to launch an attack.

The attacker has the capability to create/insert new nodes and
link them to existing nodes in the graph, as well as to some of the
new nodes. The attacker does not need to modify existing edges in
the original graph.

This is easy for the attacker to do. For example, in a real so-
cial network, the attacker only needs to register a group of fake
accounts, which act like normal users, and then connect them to
existing users by sending friend requests. The friend requests will
be easily accepted for those who would like to expand their social
networks. The attacker will determine the number of new nodes in
order to perform a successful attack. Of course, the attacker will
have costs due to creating new nodes and connecting them to ex-
isting nodes. Hence, we assign costs for creating new nodes and
connecting to existing nodes.

If new nodes try to connect with many existing nodes, this
becomes suspicious and can be easily detected (e.g., by the social
network administrator). To be realistic, we use 𝐾 to denote the
maximum number of neighbors that each new node can have.

In order to hide its malicious identity, the new fake nodes may
prefer to connect with a well-known benign node. However, for
the popular benign node, it is highly suspicious to have many new
connection requests in such a short time period. Therefore, to be
more concealed, the attacker may set a constraint on the number

ACSAC 2020, December 7–11, 2020, Austin, USA Xuening Xu, Xiaojiang Du, and Qiang Zeng

of new node connections to an existing node. We use 𝑙 to denote
this constraint. Specifically, if an existing node has already been
connected by 𝑙 new nodes, the attacker will not connect any more
new nodes to that existing node.

Like prior work [34], we assume an attacker has knowledge of
the graph and knows which nodes are positive nodes and negative
nodes. For example, in social network, a well-developedweb crawler
can be used by an attacker to collect the graph information. The
attacker selects a set of positive nodes as target nodes, denoted by
𝑇 , and the goal is to make LinLBP misclassify both the new nodes
and target nodes as negative, i.e., achieve high False Negative Rates
(FNRs) for both the new node set and target node set.

Note that there need be some new edges between new nodes and
target nodes in order to achieve high FNR for the target nodes. That
is, each new node connects to two sets of nodes: one is the target
node set and the other is the remaining nodes in the graph. For each
new node, the number of edges connecting target nodes is denoted
by 𝑟 . The value of 𝑟 could be different for different graph datasets,
and it is determined by the attacker based on the properties of the
graph, such as size and density.

3.2 The New Attack
Based on the threat model above, we describe the new attack as
follows. Given a graph 𝐺 , the attacker’s knowledge, the number
of new nodes 𝑛, the maximum number of neighbors 𝐾 that each
new node can have, constraint 𝑙 , the chosen target node set 𝑇 , the
number of edges to target nodes 𝑟 for each new node, and the costs
of creating new nodes and connecting to existing nodes, our attack
aims at LinLBP to make it achieve high FNRs on both the new
node set and the target node set at the same time. This is done by
connecting the new nodes to existing nodes without modifying the
existing edges in the original graph.

4 ATTACK DESIGNS
In this section, we present the attack design with the full knowledge
of LinLBP, that is, the attacker knows the entire training dataset
and the weight used in LinLBP. In Section 5.2.2, we show that the
assumption can be relaxed and the attack success rate is still high.

We formulate the attack as an optimization problem. The objec-
tive function is the total cost of creating new nodes and connecting
the new nodes to existing nodes. The constraints are: a) FNR = 1 for
the new nodes, b) FNR = 1 for the target nodes, and c) the maximum
number of each new node’s neighbors is bounded by 𝐾 .

4.1 Notations
Table 1 lists some of the important notations used in this paper,
which will be detailed in the rest of this section.

Given an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑢 ∈ 𝑉 is a node
and (𝑢, 𝑣) ∈ 𝐸 is an edge. |𝑉 | is the number of nodes in the original
graph. W is a |𝑉 | × |𝑉 | matrix, and each entry is the weight of the
edge between two nodes. 𝑆 is the set of 𝑛 new nodes. 𝐺 ′ = (𝑉 ′, 𝐸 ′)
denotes the graph after adding new nodes and new edges. Here
𝑉 ′ = 𝑉 ∪ 𝑆 denotes the set of all nodes in graph𝐺 ′, and 𝐸 ′ denotes
the set of edges in the new graph 𝐺 ′. 𝐶𝑛𝑜𝑑𝑒 is the cost of creating
a new node, and 𝐶𝑢𝑣 is the cost of inserting an edge between the
new node 𝑢 and the other node 𝑣 . We use a binary variable 𝐵𝑢𝑣

Table 1: Explanation of notations.

Notations Descriptions

𝑛 Number of new fake nodes
𝐾 The maximum number of neighbors of each

new node
𝑙 The maximum number of new edges that each

existing node can have
𝑇 The set of target nodes
𝑟 Number of edges connecting target nodes for

each new node
𝑤 Weight of edges
𝑆 The set of new nodes
𝐺 The original graph
𝐺 ′ The new graph
A The adjacency matrix of the original graph
A𝐺′ The adjacency matrix of the new graph
W The matrix of weights of the original graph
W𝐺′ The matrix of weights of the new graph
w𝑢 The 𝑢th row of W𝐺′

C The cost matrix
c𝑢 The 𝑢th row of the cost matrix C
B The adversarial matrix with relaxed continuous

variables
𝐵𝑢𝑣 An entry of B that indicates whether insert an

edge between node 𝑢 and node 𝑣
𝐵𝑢𝑣 Binarized 𝐵𝑢𝑣
b𝑢 The 𝑢th row of adversarial matrix B
b̄𝑢 Binarized b𝑢
𝑞𝑢 The prior reputation score of node 𝑢
𝑝𝑢 The posterior reputation score of node 𝑢
𝛼, 𝛽 Lagrangian multipliers
d The column vector for Lagrangian multipliers
∗(𝑡) A value in the 𝑡 th iteration

for a new node 𝑢, and a node 𝑣 (𝑣 can be either an existing node
or a new node) to indicate whether adding a edge between them
or not. Specifically, 𝐵𝑢𝑣 = 1 if a new edge is added between node
𝑢 and 𝑣 . Note that 𝐵𝑢𝑣 = 0 for 𝑢, 𝑣 ∈ 𝑉 , since no edge is inserted
between two existing nodes in the original graph. Then we define
the adversarial matrix B as follows:

B =

[
0 |𝑉 |× |𝑉 | B𝑇

𝑆𝑉

B𝑆𝑉 B𝑆

]
(3)

Each entry (𝑠𝑡ℎ row and 𝑣𝑡ℎ column) of B𝑆𝑉 is 𝐵𝑠𝑣 and it indi-
cates whether an edge is added between node 𝑠 ∈ 𝑆 and node 𝑣 ∈ 𝑉
or not.

The superscript 𝑇 represents the matrix transpose operator.
Each entry (𝑖𝑡ℎ row and 𝑗𝑡ℎ column) of B𝑆 is 𝐵𝑆

𝑖 𝑗
and it indicates

whether an edge is added between two nodes in 𝑆 . Specifically,
𝐵𝑆
𝑖𝑖
= 0 for all nodes in 𝑆 since no edge is added to a node itself;

𝐵𝑆
𝑖 𝑗

= 1 means that an edge is added between two nodes 𝑖, 𝑗 ∈ 𝑆
and 𝐵𝑆

𝑖 𝑗
= 0 otherwise.

Attacking Graph-Based Classification without Changing Existing Connections ACSAC 2020, December 7–11, 2020, Austin, USA

Recall that A is the adjacency matrix of the original graph 𝐺 .
Now we can define the adjacency matrix AG′ of the new graph 𝐺 ′,
which is

A𝐺′ =

[
A 0 |𝑉 |× |𝑆 |

0 |𝑆 |× |𝑉 | 0 |𝑆 |× |𝑆 |

]
+ B

=

[
A B𝑇

𝑆𝑉

B𝑆𝑉 B𝑆

] (4)

Thus, we can rewrite the matrix of all weights for the new graph
𝐺 ′ in a similar way:

W𝐺′ =

[
W W𝑇

𝑆𝑉

W𝑆𝑉 W𝑆

]
(5)

where W𝑆𝑉 is the weight between 𝑆 and𝑉 , and W𝑆 are the weights
among the new nodes in the new node set 𝑆 .

4.2 Formulation
Using the notations above, the formulation of the optimization
problem is given as follows:

min
B

∑
𝑢∈𝑆 ; 𝑣∈𝑉 ′

𝐵𝑢𝑣𝐶𝑢𝑣 + 𝑛 ×𝐶𝑛𝑜𝑑𝑒

𝑠 .𝑡 . 𝐹𝑁𝑅 = 1, for the new nodes
𝐹𝑁𝑅 = 1, for the target nodes
𝐵𝑢𝑣 ∈ {0, 1}, for 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ′∑

𝑣 𝐵𝑢𝑣 ≤ 𝐾, for 𝑢 ∈ 𝑆

(6)

We aim to find the adversarial matrix B that minimizes the ob-
jective function in (6). The objective function is the total cost of
creating new nodes and inserting edges. The first and the second
constraints mean that LinLBP mis-classifies all the new nodes and
target nodes as negative. The third constraint means that the vari-
ables are binary. The last constraint indicates that the maximum
number of neighbors that each new node can have is no more than
𝐾 .

Since the variables are binary and some constraints are highly
nonlinear, it is very difficult to solve this optimization problem
directly. Instead, we approximately solve this problem in the fol-
lowing.

For each binary variable 𝐵𝑢𝑣 , we relax it to a continuous variable,
and convert it back to a binary after solving the related optimization
problem. In the rest of paper, 𝐵𝑢𝑣 is a continuous variable unless
stated otherwise.

For the first and the second constraints, which are highly non-
linear, we convert FNR = 1 to 𝑝𝑢 < 0 for each 𝑢 in the new node set
and target node set, where 𝑝𝑢 is the posterior reputation score of 𝑢.
This is reasonable because LinLBP predicts a node as negative when
its posterior reputation score is negative. Then we add converted
constraints to the objective function using Lagrangian multipliers,
and we rewrite the optimization problem as below:

min
B

∑
𝑢∈𝑆 ; 𝑣∈𝑉 ′

𝐵𝑢𝑣𝐶𝑢𝑣 + 𝑛 ×𝐶𝑛𝑜𝑑𝑒 + 𝛼
∑
𝑢∈𝑆

𝑝𝑢 + 𝛽
∑
𝑢∈𝑇

𝑝𝑢

𝑠 .𝑡 .
∑

𝑣 𝐵𝑢𝑣 ≤ 𝐾, for 𝑢 ∈ 𝑆
(7)

where 𝛼, 𝛽 > 0 are Lagrangian multipliers, and 𝐵𝑢𝑣 is a binary
converted from the continuous variable 𝐵𝑢𝑣 .

Since the posterior reputation scores are iteratively computed in
LinLBP, without loss of generality, here we consider the 𝑡th itera-
tion, and the posterior reputation scores are computed as follows:

p(𝑡)
𝐺′ = q𝐺′ + A(𝑡−1)

𝐺′ ⊙ W𝐺′p(𝑡−1)
𝐺′ (8)

where q𝐺′ is the prior reputation scores of the new graph𝐺 ′. A(𝑡−1)
𝐺′

and p(𝑡−1)
𝐺′ are the adjacency matrix and posterior reputation scores

in the (𝑡 − 1)th iteration, respectively.
After having posterior reputation scores in the 𝑡 th iteration, we

can update the adversarial matrix B(𝑡) by solving

min
B(𝑡)

O(B(𝑡)) =
∑
𝑢∈𝑆

b(𝑡)
𝑢 c𝑇𝑢 + 𝑛 ×𝐶𝑛𝑜𝑑𝑒 + d𝑇 p(𝑡+1)

𝐺′

𝑠 .𝑡 .
∑

𝑣 𝐵𝑢𝑣 ≤ 𝐾, for 𝑢 ∈ 𝑆
(9)

The above optimization problem is expressed in vector form, where
the objective function is O(B), b(𝑡)

𝑢 is the 𝑢th row of the B(𝑡) cor-
responding to the new node 𝑢, c𝑢 is the 𝑢th row of the cost matrix
C, d is a column vector for Lagrangian multipliers defined as:

𝑑𝑢 =

𝛼, 𝑢 ∈ 𝑆
𝛽, 𝑢 ∈ 𝑇
0, Otherwise

(10)

Given a graph, a set of new nodes and a set of chosen target nodes,
d is fixed.

We search the optimal value of B(𝑡) by using the gradient of
each row b(𝑡)

𝑢 , i.e., finding the optimal connections of each new
node one by one. In each iteration, we first reset b(𝑡)

𝑢 to be 0 before
we recompute b(𝑡)

𝑢 for the new node 𝑢. In other words, when we
decide to re-choose the neighbors for the new node 𝑢, we treat
the node 𝑢 as a brand new node with no neighbor, which is also
consistent with the attacker’s capability — inserting new edges
instead of modifying existing edges.

For each new node 𝑢, we compute the gradient as follows:

𝜕O
(
B(𝑡)

)
𝜕b(𝑡)

𝑢

= c𝑢 +
𝜕

{
d𝑇

[
B(𝑡) ⊙ W𝐺′p(𝑡)

𝐺′

]}
𝜕b(𝑡)

𝑢

= c𝑢 +
[
d𝑇𝑢

(
𝑝𝑢W𝑑

𝑢

)
+ 𝛼

(
w𝑢P(𝑡)

𝐺′

)] (11)

Each entry in d𝑢 is 𝑑𝑢,𝑖 = 𝑑𝑖 for 𝑖 ≠ 𝑢, and 𝑑𝑢,𝑢 = 0. w𝑢 is the
𝑢th row of W𝐺′ . W𝑑

𝑢 is a diagonal matrix, and the elements on
the diagonal are the elements in w𝑢 , i.e., W𝑑

𝑢 (𝑖, 𝑖) = w𝑢 (𝑖). P(𝑡)
𝐺′

is a diagonal matrix and P(𝑡)
𝐺′ (𝑖, 𝑖) = 𝑝

(𝑡)
𝑖

, which is the posterior
reputation score of the 𝑖th node in the 𝑡 th iteration.

Note that the gradient we obtained for the new node 𝑢 is a
constant, which means that we can keep going along the opposite
direction of the gradient to minimize the objective function, without
worrying about the change of the gradient when we have a differ-
ent b(𝑡)

𝑢 . Recall that b(𝑡)
𝑢 is initialized to be 0, so the recomputed

connections for new node 𝑢 is

b(𝑡)
𝑢 = −_ ×

𝜕O
(
B(𝑡)

)
𝜕b(𝑡)

𝑢

(12)

where _ > 0 is the step size. As one of the constraints, the maximum
number of neighbors that each new node can have is bounded by

ACSAC 2020, December 7–11, 2020, Austin, USA Xuening Xu, Xiaojiang Du, and Qiang Zeng

Figure 1: The degree distribution of the Enron dataset.

Figure 2: The degree distribution of the Facebook dataset.

𝐾 , which implies that at most 𝐾 entries of b̄(𝑡)
𝑢 can be 1. To this

end, we can select the largest non-negative 𝐾 entries in b(𝑡)
𝑢 , and

convert them to 1 and set other entries to 0, in order to obtain binary
values b̄(𝑡)

𝑢 . b̄(𝑡)
𝑢 is the 𝑢th row in the adversarial matrix in the 𝑡 th

iteration. The posterior reputation scores and the adversarial matrix
are iteratively updated as aforementioned until the convergence or
the predefined maximum number of iterations is reached.

If we want the new node 𝑢 to connect to 𝑟 target nodes, we
only need to reserve the exact number of entries for 𝑟 target nodes,
which have the largest entries among target nodes.

5 EVALUATION
5.1 Experimental Setup
5.1.1 Dataset Description. In order to conduct meaningful evalua-
tion of the new attack on different types of graphs, such as different
graph sizes and density of nodes, we choose two real-world graphs:
Enron and Facebook graphs. The two datasets containing only neg-
ative nodes are originally from SNAP [18]. We obtained the datasets
with synthesized positive nodes from one of authors of [34] and
the website of another author [11]. The authors of [34] cited the
previous works [1, 12, 38], and they synthesized positive nodes
and their edges by replicating the negative nodes and their edges
without incurring the influence of structural differences between
negative and positive nodes.

The Enron graph with synthesized positive nodes has 67,392
nodes, where half of them are negative nodes and the other half are
positive nodes. Each node in the Enron graph stands for an email

address, and an edge between two nodes means that these two
email addresses sent at least one email to each other. A negative
node in the Enron graph represents an normal email address, while
a positive node represents a spamming email address.

The Facebook graph with synthesized positive nodes has 8,078
nodes, where positive nodes and negative nodes each share half of
them. Each node in the Facebook graph represents a user, and two
users are connected by an edge if they are friends on Facebook. A
negative node stands for a normal user and a positive node means
that this user is malicious.

5.1.2 Node Degree Distribution. Figure 1 shows the node degree
distribution of the Enron dataset. The average degree of the Enron
dataset is 11. Most nodes have degrees less than 10, but a few nodes
have vast degrees, some with more than 1000 degrees.

Figure 2 shows the degree distribution of the Facebook dataset.
The average degree of the Facebook dataset is 44. Most nodes have
degrees less than 50, but some nodes have degrees larger than 1000.

Note that the average degrees are both larger than 10 and the
reasonable weight𝑤 should be around 1/𝑑𝑒𝑔𝑟𝑒𝑒 . Thus, in the ex-
periments, we consider𝑤 ∈ (0, 0.1].

5.1.3 Training Dataset and Testing Dataset. Each training dataset
contains 100 positive nodes and 100 negative nodes, all of which are
randomly selected. We set \ = 0.4 in LinLBP. To be more specific,
the prior reputation scores of the 100 positive nodes are set as 0.4,
which means highly positive, and the prior reputation scores of the
100 negative nodes are set as -0.4, which means highly negative.
All other nodes are the testing dataset, and their prior reputation
scores are set as 0.

5.1.4 Target Nodes Selection. An attacker’s goal is to choose some
target nodes that can be utilized to help new and target nodes evade
detection. The target nodes can be a subset of the positive nodes.
Without loss of generality, we consider that the attacker randomly
picks 100 target nodes from positive nodes as target nodes.

5.1.5 Edge Cost. Assume the costs of inserting new edges for dif-
ferent node pairs are uniformly distributed among [1, 10]. Each
time, a number is generated between [1, 10] to represent the cost
of inserting a new edge between a new node and an existing node.
Note that we do not need to consider the cost between two existing
nodes because the attack does not modify any existing edges in
the original graph. Note that the values of cost here are only to
simulate different difficulties of inserting edges.

5.1.6 Parameters Setting. We set 𝑤 = 0.01, 𝑙 = 20, and 𝛼 = 𝛽 =

1000. For the prior reputation scores of nodes in the training dataset,
as mentioned above, we set \ = 0.4. The nodes in the training
dataset are clearly labeled, and each of them is either highly positive
or negative. LinLBP knows nothing about the newly added fake
nodes, because they are new to LinLBP. However, LinLBP may
consider the nodes as suspicious if there are improper activities
from the attacker. For instance, an attacker creates too many fake
accounts using the same IP and/or in a very short period of time.
Taking these factors into consideration, LinLBP labels the new
fake nodes as slightly positive at the beginning, e.g., sets the prior
reputation scores of the new nodes to be 0.1.

Attacking Graph-Based Classification without Changing Existing Connections ACSAC 2020, December 7–11, 2020, Austin, USA

Figure 3: The impact of different values of 𝑟 on FNRs for the Enron dataset.

Figure 4: The impact of different values of 𝑟 on FNRs for the Facebook dataset.

5.2 Experimental Results
5.2.1 Attacker with Full Knowledge.

Choice of the Best 𝑟 . The number of edges between new nodes
and target nodes could have an impact on the FNR for the target
nodes. We study the impact for different numbers of new nodes
on both datasets. Without loss of generality, we set 𝐾 = 40 for
both datasets, and we want to find the best 𝑟 for each of them.
Note that each new node has 𝑟 edges connected to the target nodes.
Meanwhile, the remaining 𝐾 − 𝑟 edges are linked to other nodes,
which are very likely to be negative (good) nodes.

For the Enron dataset, as shown in Figure 3, the FNR reaches
the highest value when the number of edges to the target nodes
is about the half of 𝐾 - the maximum number of edges each new
node can have. Thus, we set 𝑟 = 𝐾/2 for the Enron dataset.

For the Facebook dataset, as shown in Figure 4, the FNR reaches
the highest value when the number of edges to the target nodes is
about 40% of 𝐾 . Thus, we set 𝑟 = 0.4𝐾 for the Facebook dataset.

Note that in both figures, when 𝑟 is relatively small, though new
nodes can be highly negative due to lots of connections to existing

negative nodes, the target nodes are barely influenced by the new
nodes via only a few connections. When 𝑟 is relatively large, e.g.,
𝑟 ≥ 30 in Figure 3 and 𝑟 ≥ 21 in Figure 4, the new nodes themselves
cannot become negative because they only have a small number of
edges to existing negative nodes. As a result, the target nodes are
still positive and the FNR for the target nodes is 0.

Influence of 𝐾 and 𝑛. We study the influence of different value
of 𝐾 and 𝑛 on FNRs, which are shown in Figure 5 and Figure 6. We
can see that with the same number of new nodes, a larger value of
𝐾 usually has a higher FNR, which implies that the more neighbors
each new node can have, then the more powerful the attack is.

Specifically, in Figure 5, the FNRs for the new nodes and the
target nodes remain 100% for all the different combinations of values
of 𝐾 and 𝑛. When 𝐾 is too small, FNRs on both 𝑆 and𝑇 are almost 0.
This is because new nodes don’t have enough edges connecting to
existing negative nodes to make themselves classified as negative,
which also makes them useless to target nodes. However, as 𝐾
grows, FNRs can achieve 1 on both sets. Recall that the average
degree of the Enron dataset is 11, and we try to find a proper 𝐾 ,
which is suitable for the attack and also as close to the average

ACSAC 2020, December 7–11, 2020, Austin, USA Xuening Xu, Xiaojiang Du, and Qiang Zeng

Figure 5: The impact of different values of 𝐾 and 𝑛 on FNRs for the Enron dataset.

Figure 6: The impact of different values of 𝐾 and 𝑛 on FNRs for the Facebook dataset.

degree as possible. Since 𝐾 = 20, 30 is not enough to launch a
successful attack, for consistency, we set 𝐾 = 40 for the Enron
dataset.

Figure 6 shows that for the Facebook dataset, the highest FNR
for the target nodes is around 0.5, which means that only half
of the target nodes can be mis-classified. Recall that the average
degree of the Facebook dataset is 44, and it is much denser than
the Enron dataset. Besides, an attacker does not modify existing
connections in the original graph, which implies that it is much
more difficult for an attacker to affect the target nodes under the
strong influence from the original neighbors of the target nodes.
With similar consideration of 𝐾 of the Enron dataset, we set 𝐾 = 50
for the Facebook dataset.

Interestingly, the FNR decreases dramatically as the number of
new nodes increases, especially when 𝐾 is either relatively small
or large. For instance, in Figure 6, when 𝐾 = 30 or 𝐾 = 70, the FNR
for the target nodes gradually drops as the number of new nodes
𝑛 grows, and even becomes 0 when 𝑛 ≥ 130. The following two
factors cause the phenomenon shown in Figure 5 and Figure 6.

• New nodes choose their potential neighbors according to
their preference lists. With the fixed 𝐾 and the constraint

𝑙 , the most popular existing nodes are gradually occupied
(connected) by the new nodes. As the number of new nodes
grows, since top candidate nodes in the preference list of
later new nodes may be already fully occupied and become
no longer available, the later new nodes are more likely to
connect to some “bad” neighbors, which finally leads to a
decreasing FNR.

• Smaller 𝐾 means that each new node is allowed to connect
fewer existing nodes. Though new nodes can still be classi-
fied as negative, they are closer to the classification boundary
(i.e., the posterior reputation score equals to 0) than when
𝐾 is larger, due to the limited help from existing negative
nodes, which will further result in less stability against the
"bad" neighbors mentioned above. In other words, FNRs for
new nodes will drop faster when the number of connected
"bad" neighbors increases.

Figure 5 and Figure 6 have similar trends. Here, we take Figure 6
as an example to explain the results in detail. Comparing𝐾 = 30 and
𝐾 = 40, since 𝐾 is still relatively small, the popular existing nodes
are occupied slower, whichmeans that the first factor does not make
a big influence when 𝐾 is small. Thus, the second factor dominates

Attacking Graph-Based Classification without Changing Existing Connections ACSAC 2020, December 7–11, 2020, Austin, USA

(a) 𝑛 = 50 (b) 𝑛 = 60 (c) 𝑛 = 70

Figure 7: The impact of varying knowledge of the training dataset, with different numbers of new nodes, on FNRs for the
Enron dataset.

(a) 𝑛 = 50 (b) 𝑛 = 60 (c) 𝑛 = 70

Figure 8: The impact of varying knowledge of the training dataset, with different numbers of new nodes, on FNRs for the
Facebook dataset.

here, explaining why the FNR for the new nodes decreases when
𝑛 ≥ 130 for 𝐾 = 30. On the other hand, comparing 𝐾 = 60 and 𝐾 =

70, since 𝐾 is large here, the influence of the second factor becomes
negligible. Nevertheless, the popular existing nodes are occupied
much faster, and the new nodes connect to more "bad" neighbors.
Thus, the first factor dominates in this scenario, explaining why
FNRs for the new nodes are quite different for 𝐾 = 60 and 𝐾 = 70
when 𝑛 ≥ 130.

5.2.2 Attacker with Partial Knowledge.

Partial Knowledge of Training Dataset. Training dataset is
the basic known knowledge of a graph and it acts as a starting point
for LinLBP to propagate beliefs and then calculate the posterior
reputation scores for all nodes. In some cases, the entire training
dataset may not be fully available to the attacker, and the attacker
only knows a part of it. Figures 7 and 8 show how an attacker’s
knowledge of the training dataset affects FNRs.

As we can see in Figure 7 and Figure 8, an attacker can still
launch a powerful attack while only knowing a part of the training
dataset. It is worth noting that an attacker can always achieve 100%

FNRs for new nodes with only partial knowledge of the training
dataset for both Enron and Facebook datasets. As the number of new
nodes increases, more of the training dataset needs to be known to
launch a successful attack. Specifically, 40% of the training dataset
is sufficient if an attacker only wants to launch a small scale attack,
e.g., only adding 50 new fake nodes to the graph (𝑛 = 50).

Attack with Substitute Weight. Under this situation, the at-
tacker knows the entire training dataset but does not have any
idea of the weight𝑤 in LinLBP. The attacker may use a substitute
weight and still achieve a high FNR.

Figure 9 and Figure 10 show that the attack performance de-
creases as the substitute weight is further from the true weight.
However, the attacker still has about a 50% chance to launch an
effective attack even if the attacker randomly picks a value from
the weight range.

Besides, in Figure 9 and Figure 10, with a fixed substitute weight,
FNR drops as the number of new nodes increases. This is because
an attacker using a substitute weight to propagate reputation scores

ACSAC 2020, December 7–11, 2020, Austin, USA Xuening Xu, Xiaojiang Du, and Qiang Zeng

(a) 𝑛 = 50 (b) 𝑛 = 60 (c) 𝑛 = 70

Figure 9: The impact of varying substitute weight values, with different numbers of new nodes, on FNRs for the Enron dataset.

(a) 𝑛 = 50 (b) 𝑛 = 60 (c) 𝑛 = 70

Figure 10: The impact of varying substitute weight values, with different numbers of new nodes, on FNRs for the Facebook
dataset.

among a larger number of new nodes is more likely to obtain inaccu-
rate posterior reputation scores. This implies that if an attacker has
no idea about the weight, the attacker can launch a more effective
attack by adding a smaller number of new nodes.

Attack with Substitute Weight and Partial Training Data-
set. In this scenario, an attacker has even less knowledge of LinLBP,
neither the weight𝑤 nor the full knowledge of the training dataset.
In the experiments, we fix one of the two factors (substitute weight
and the knowledge of training dataset) to explore FNRs under the
different values of the other factor. By default, we assume that
an attacker uses a substitute weight 0.03 and knows 40% of the
training dataset. Since the attacker only has little knowledge of
LinLBP, as mentioned before, the attacker may prefer to perform a
small scale attack by choosing 𝑛 = 50, i.e., only adding 50 new fake
nodes. We also run the experiments for larger scale attacks, such
as 𝑛 = 60, 70, 80, and 90. When 𝑛 increases, the trends of the FNR
are similar to those shown in Figures 7, 8, 9, and 10.

Figure 11 reveals the attack performance on the Enron dataset
and the Facebook dataset under the least knowledge of LinLBP.
Specifically, Figure 11(a) and Figure 11(c) show that with a substitute

weight 0.03, the attacker is still able to successfully launch attacks
with partial training knowledge, and only suffers a slight decrease
of the FNR for the target nodes, comparing to the performance with
the knowledge of the true weight. Also, as we can see from Figure
11(b) and Figure 11(d), with only 40% of the training dataset, an
attacker can choose a relatively small substitute weight to make
LinLBP misclassify almost all the new fake nodes and a part of
the target nodes at the same time. Note that the FNR on the target
node set for the Facebook dataset is lower than that for the Enron
dataset. The reason is that the Facebook dataset is much denser than
the Enron dataset, which is similar to the reason of the difference
between Figure 5 and Figure 6.

5.3 Evaluation Summary
According to the experimental results shown above, different values
of parameters play an essential role in the effectiveness of attacks.
For different datasets, the choice of the best value for each parameter
varies. However, the trends are similar as the parameters vary.

For each new node, a balance between values of 𝑟 and 𝐾 − 𝑟 is
necessary for an attacker to achieve high FNRs on both the new

Attacking Graph-Based Classification without Changing Existing Connections ACSAC 2020, December 7–11, 2020, Austin, USA

(a) Impact of knowledge of the training data on FNRs for Enron (b) Impact of substitute weight on FNRs for Enron

(c) Impact of knowledge of the training data on FNRs for Facebook (d) Impact of substitute weight on FNRs for Facebook

Figure 11: The impact under the least knowledge on FNRs for the Enron dataset and the Facebook dataset. When exploring
the impact of knowledge of the training data, a substitute weight of 0.03 is used. When exploring the impact of the substitute
weight, 40% of the training dataset is used.

node set and the target node set. An extremely small or large value
of 𝑟 can lead to a poor FNR.

When the number of new nodes 𝑛 is relatively small, a larger
value of 𝐾 can make the attack more powerful. On the contrary,
a larger value of 𝐾 can harm the effectiveness of the attack when
𝑛 has a relatively large value. Thus, it is critical for an attacker to
find an appropriate combination of values of 𝐾 and 𝑛 to launch a
successful attack. For the Enron dataset, for example, we achieve
100% FNRs for the new nodes and the target nodes under various
combinations of values of 𝐾 and 𝑛, such as 𝐾 = 40, 𝑛 = 90 and
𝐾 = 50, 𝑛 = 70.

With partial knowledge of the training dataset and a substitute
weight, adding a smaller number of new nodes can make the attack
more effective, which means the attacker can achieve a higher FNR
and needs less training dataset. Besides, the FNR increases when
the attacker either has more knowledge about the training dataset,
or uses a substitute weight closer to the true weight. For instance,
with a substitute weight = 0.03 and only 40% of the training dataset,
the attack still can achieve FNR = 0.8 for the target nodes of the
Enron dataset for 𝐾 = 40 and 𝑛 = 50.

6 CONCLUSION
In this paper, we proposed a new attack on on collective classifica-
tion methods for graphs by adding fake nodes into existing graphs.
The new attack is more realistic and practical than the attacks in
several literature. We formulated the new attack as an optimization
problem and utilized a gradient-based method to generate edges of
newly added fake nodes. Our extensive experiments on real-world
social network data show that the attack can not only make new
fake nodes evade detection, but also make the detector mis-classify
most of the chosen target (bad) nodes. The new attack works well
even when the attacker has only partial knowledge about the train-
ing dataset and/or the detector’s model.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Founda-
tion (NSF) under grants CNS-1828363, CNS-1564128, CNS-1824440,
CNS-2016589, CNS-1856380 and CNS-2016415. We would like to
thank the authors of [34], Binghui Wang and Neil Zhenqiang Gong,
for sharing their source code and datasets. We also thank anony-
mous reviewers for their valuable feedback.

ACSAC 2020, December 7–11, 2020, Austin, USA Xuening Xu, Xiaojiang Du, and Qiang Zeng

REFERENCES
[1] Lorenzo Alvisi, Allen Clement, Alessandro Epasto, Silvio Lattanzi, and Alessandro

Panconesi. 2013. Sok: The evolution of sybil defense via social networks. In 2013
ieee symposium on security and privacy. IEEE, 382–396.

[2] Aleksandar Bojchevski and Stephan Günnemann. 2018. Adversarial attacks on
node embeddings via graph poisoning. arXiv preprint arXiv:1809.01093 (2018).

[3] Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos, Jorge Lería, Jose Lorenzo,
Matei Ripeanu, and Konstantin Beznosov. 2015. Integro: Leveraging Victim
Prediction for Robust Fake Account Detection in OSNs.. In NDSS, Vol. 15. 8–11.

[4] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[5] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding
the detection of fake accounts in large scale social online services. In Presented
as part of the 9th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 12). 197–210.

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management. 891–900.

[7] Duen Horng “Polo” Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright,
and Christos Faloutsos. 2011. Polonium: Tera-scale graph mining and inference
for malware detection. In Proceedings of the 2011 SIAM International Conference
on Data Mining. SIAM, 131–142.

[8] Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto
Perdisci, Manos Antonakakis, and Nikolaos Vasiloglou. 2017. Practical attacks
against graph-based clustering. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 1125–1142.

[9] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial network
embedding. In Thirty-Second AAAI Conference on Artificial Intelligence.

[10] Peng Gao, Binghui Wang, Neil Zhenqiang Gong, Sanjeev R Kulkarni, Kurt
Thomas, and Prateek Mittal. 2018. Sybilfuse: Combining local attributes with
global structure to perform robust sybil detection. In 2018 IEEE Conference on
Communications and Network Security (CNS). IEEE, 1–9.

[11] Neil Zhenqiang Gong. 2019. Code & Data. http://gonglab.pratt.duke.edu/code-
data.

[12] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal. 2014. Sybilbelief: A
semi-supervised learning approach for structure-based sybil detection. IEEE
Transactions on Information Forensics and Security 9, 6 (2014), 976–987.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[14] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. Random walk
based fake account detection in online social networks. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 273–284.

[15] Jinyuan Jia, Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. 2017. AttriInfer:
Inferring user attributes in online social networks using markov random fields. In
Proceedings of the 26th International Conference on World Wide Web. 1561–1569.

[16] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[19] Huayi Li, Zhiyuan Chen, Bing Liu, Xiaokai Wei, and Jidong Shao. 2014. Spotting
fake reviews via collective positive-unlabeled learning. In 2014 IEEE international
conference on data mining. IEEE, 899–904.

[20] Zhou Li, Sumayah Alrwais, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2013.
Finding the linchpins of the dark web: a study on topologically dedicated hosts on
malicious web infrastructures. In 2013 IEEE Symposium on Security and Privacy.
IEEE, 112–126.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[22] Abedelaziz Mohaisen, Nicholas Hopper, and Yongdae Kim. 2011. Keep your
friends close: Incorporating trust into social network-based sybil defenses. In
2011 Proceedings IEEE INFOCOM. IEEE, 1943–1951.

[23] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos.
2007. Netprobe: a fast and scalable system for fraud detection in online auction
networks. In Proceedings of the 16th international conference on World Wide Web.
201–210.

[24] Hogun Park and Jennifer Neville. 2019. Exploiting interaction links for node
classification with deep graph neural networks. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence. AAAI Press, 3223–3230.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 701–710.
[26] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61–80.

[27] Meng Shen, Zelin Liao, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2019. VLA: A
Practical Visible Light-based Attack on Face Recognition Systems in Physical
World. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 3, 3 (2019), 1–19.

[28] Gianluca Stringhini, Yun Shen, Yufei Han, and Xiangliang Zhang. 2017. Marmite:
spreading malicious file reputation through download graphs. In Proceedings of
the 33rd Annual Computer Security Applications Conference. 91–102.

[29] Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn
Song. 2018. Data poisoning attack against unsupervised node embeddingmethods.
arXiv preprint arXiv:1810.12881 (2018).

[30] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
2020. Non-target-specific Node Injection Attacks on Graph Neural Networks: A
Hierarchical Reinforcement Learning Approach. In Proc. WWW, Vol. 3.

[31] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association:
large scale malware detection by mining file-relation graphs. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. 1524–1533.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[33] MohamadAli Torkamani and Daniel Lowd. 2013. Convex adversarial collective
classification. In International Conference on Machine Learning. 642–650.

[34] Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking graph-based classi-
fication via manipulating the graph structure. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2023–2040.

[35] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting
fraudulent users in online social networks via guilt-by-association on directed
graphs. In 2017 IEEE International Conference on Data Mining (ICDM). IEEE,
465–474.

[36] BinghuiWang, Jinyuan Jia, and Neil Zhenqiang Gong. 2018. Graph-based security
and privacy analytics via collective classification with joint weight learning and
propagation. arXiv preprint arXiv:1812.01661 (2018).

[37] Binghui Wang, Jinyuan Jia, Le Zhang, and Neil Zhenqiang Gong. 2018. Structure-
based sybil detection in social networks via local rule-based propagation. IEEE
Transactions on Network Science and Engineering 6, 3 (2018), 523–537.

[38] Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. 2017. SybilSCAR: Sybil
detection in online social networks via local rule based propagation. In IEEE
INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1–9.

[39] Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. 2018. Attack graph
convolutional networks by adding fake nodes. arXiv preprint arXiv:1810.10751
(2018).

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[41] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei Gu.
2012. Analyzing spammers’ social networks for fun and profit: a case study
of cyber criminal ecosystem on twitter. In Proceedings of the 21st international
conference on World Wide Web. 71–80.

[42] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.
Network representation learning with rich text information. In Twenty-Fourth
International Joint Conference on Artificial Intelligence.

[43] Qiang Zeng, Jianhai Su, Chenglong Fu, Golam Kayas, Lannan Luo, Xiaojiang Du,
Chiu C Tan, and Jie Wu. 2019. A multiversion programming inspired approach to
detecting audio adversarial examples. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 39–51.

[44] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2847–2856.

[45] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph
neural networks via meta learning. arXiv preprint arXiv:1902.08412 (2019).

[46] Fei Zuo, Bokai Yang, Xiaopeng Li, and Qiang Zeng. 2019. Exploiting the inherent
limitation of l0 adversarial examples. In 22nd International Symposium on Research
in Attacks, Intrusions and Defenses ({RAID} 2019). 293–307.

[47] Fei Zuo and Qiang Zeng. 2020. Erase and Restore: Simple, Accurate and Resilient
Detection of 𝐿_2 Adversarial Examples. arXiv preprint arXiv:2001.00116 (2020).

http://gonglab.pratt.duke.edu/code-data
http://gonglab.pratt.duke.edu/code-data
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 RELATED WORK And Background
	2.1 Node Classification Methods
	2.2 Linearized Loopy Belief Propagation
	2.3 Adversarial Machine Learning on Graphs

	3 MODEL SETUP
	3.1 Threat Model
	3.2 The New Attack

	4 ATTACK DESIGNS
	4.1 Notations
	4.2 Formulation

	5 EVALUATION
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Evaluation Summary

	6 CONCLUSION
	Acknowledgments
	References

