T2Pair: Secure and Usable Pairing for Heterogeneous IoT Devices

Xiaopeng Li, Qiang Zeng, Lannan Luo, Tongbo Luo

CCS 2020

IoT Pairing

- Pairing is supposed to establish a secure communication channel
- IoT pairing is important for
 - adding a new IoT device to a network
 - data transmission between two devices (e.g., a bloodpressure meter in Walmart and your phone)

Design Requirements

- Secure: resilient to co-located malicious devices
- Usable for heterogeneous IoT devices
 - No conventional UIs like keyboards
 - Not special sensors (e.g., inertial)

Existing Approaches

- Proximity-based
 - Move2Auth [InfoCom'17]: wireless signal features
 - Perceptio [S&P'19]: ambient context

Insecure: exploited by co-located attackers

- Physical contact-based
 - ShaVe/ShaCK [TMC'09]: shake two devices together
 - H2H [CCS'13]: measure heartbeat data

More secure but needs special hardware/sensors

Our Insights

- Most IoT devices (>92%) have a button, knob, and/or small touchscreen
- Given a user wearing a smartwatch, when she presses a button of an IoT device, both the IoT device and the smartwatch can sense the operation
- Both sides have clocks: timestamps as evidence

T2Pair: System Architecture

T2Pair: System Architecture

T2Pair: System Architecture

Pairing Operations

- Pressing the button a few times
- Twisting the knob back and forth
- Zig-zag swiping on the touchscreen

Sensing Physical Operations

Correlation between button events and IMU data

Threat Model and Countermeasures

- Mimicry attacks: an adversary mimics a user to press a device to pair it with the user's smartwatch
 - Countermeasure: random pauses (enforced automatically)
- Man-in-the-Middle attacks
 - Countermeasure: faithful fuzzy commitment
 - Why fuzzy commitment?
 - two pieces of evidence are similar but not identical
- Online brute-force attacks
 - Countermeasure: Zero-knowledge password proof
- Offline brute-force attacks
 - Countermeasure: Diffie-Hellman Encrypted Key Exchange

Pairing Protocol

Device d_1	Device d_2						
Phase 1: Initialization							
	Initiates the pairing						
Phase 2: Extracting Evidence							
$E_{d_1} = Time_Int_Seq(d_1)$		$E_{d_2} = Time_Int_Seq(d_2)$					
if self-checking fails, aborts		if self-checking fails, aborts and reminds the user					
Phase 3: Fuzzy Commitment							
(1) picks a random value $P \in \mathbb{F}_{2^k}^m$ (2) $\lambda \in \mathbb{F}_{2^k}^n \xleftarrow{\text{encode}} \text{RS}(2^k, m, n, P)$							
(3) commits: $\delta = e(E_{d_1}) \oplus \lambda$	$\xrightarrow{\delta}$	(4) decommits: $\lambda' = e(E_{d_2}) \oplus \delta$ (5) $P' \xleftarrow{\text{decode}} \overline{\text{RS}}(2^k, m, n, \lambda')$					
Phase 4: PAKE							
(6) picks $a; A = g^a \mod p; w = h(P)$	$\xrightarrow{\mathrm{E}(w,A)}$	$(\overline{\mathcal{D}})$ picks $b; B = g^b \mod p; w' = h(P')$					
$(9) K = B^a \mod p$	$E(w',B C_1)$	(8) $K' = A^b \mod p$; picks a challenge C_1					
(10) picks a challenge C_2	$\xrightarrow{\mathrm{E}(K,C_1 C_2)}$	(11) if C_1 is not received, aborts					
(12) if C_2 is not received, aborts	$\leftarrow E(K', C_2)$						

Traditional Encoding Does Not Work Well

Ham(121, 57) = 1

Ham(127, 128) = 8

Traditional Encoding Does Not Work Well

Our solution: reduce an interval value by dividing a base value and represent it by counting "1".

$$n = \lfloor i/B \rfloor$$
 $e(i) = \underbrace{1, 1, \dots, 1, 0, 0, \dots, 0}_{L}$

Evaluation

- Accuracy
- Resilience to mimicry attacks
- Randomness and entropy
- Parameter studies
 - Operation number, IMU sampling rate, postures, ...
- Usability

Accuracy

- Both FRR and FAR can be improved by adding random pauses.
- Pauses: 0.00 FAR and low FRR for button, knob and screen.

Button without pause (FRR: 0.10, FAR: 0.02)

Button with pause (FRR: 0.03, FAR: 0.00)

Resilience to Trained Mimicry Attacks

• The attacker practices well (i.e., training), stands close to the target user, and has a clear view

Pauses?	Dev.	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	Avg.
No	button	0.20	0.27	0.27	0.40	0.20	0.20	0.33	0.27	0.33	0.27	0.274
	knob	0.27	0.20	0.27	0.33	0.20	0.13	0.27	0.20	0.40	0.13	0.240
	screen	0.20	0.07	0.13	0.27	0.33	0.20	0.13	0.20	0.20	0.07	0.180
Yes	button	0.0	0.07	0.0	0.07	0.07	0.07	0.07	0.0	0.07	0.0	0.040
	knob	0.0	0.0	0.07	0.07	0.0	0.07	0.07	0.0	0.13	0.0	0.040
	screen	0.0	0.0	0.0	0.0	0.07	0.07	0.0	0.0	0.13	0.0	0.027

Randomness and Entropy

□ Randomness

- + NIST statistical test (p > 0.01) confirms randomness.
- + Interval data is abstracted into **normal distributions**.

□ Entropy

$$E_i = \frac{1}{2}\log_2(2\pi e\sigma^2) \qquad l_E = n_1 * E_1 + n_2 * E_2 + \log_2\binom{n_1 + n_2}{n_2}$$

Device	Entropy (bits)	Bit Rate (bit/s)
button	34.3 - 38.5	10.3 - 13.2
knob	34.3 - 37.9	10.6 - 13.6
screen	32.3 - 36.6	11.6 - 14.8

Limitations

 If an attacker uses a camera that points at the user performing authentication, T2Pair is vulnerable online attacks

Offline attacks cannot succeed due to DH

- Still a low chance for trained mimicry attacks
 - More random pauses
- Not usable to hold a large phone and twist a small knob

Takeaways

- Prior IoT pairing approaches are insecure or inapplicable to constrained IoT devices
 - We propose the **first** secure and usable approach
- Simple operations (e.g., pressing a button, twisting a knob) are used for pairing
- Faithful fuzzy commitment: better accuracy
- Zero-knowledge password proof: turn a lowentropy "password" to a high-entropy key

Thank you !

Qiang Zeng (zeng1@cse.sc.edu)