
Cross-App Interference Threats in Smart Homes:
Categorization, Detection and Handling

Haotian Chi, Qiang Zeng, Xiaojiang Du, Jiaping Yu

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Home Automation

Home-wide automation

q Home-automation apps
§ Lock the door when all leave
§ When arriving home, if the room is too hot, turn on A/C

Subsystem-level automationSingle-device automation

Smoke detection
Camera surveillance Smart kitchen

Heating control Lighting control

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Rule Abstraction

Rule = TCA template + Configuration
q Configuration: app-device binding relations, threshold, etc.

A home-automation app contains one or more rules, each in the form of T-C-A

• Trigger: “when resident arrives home”
• Condition: “if room temperature < 18c”
• Action: “turn on heater”

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Cross-App Interference (CAI) Threats

When multiple rules interplay in a home, they may interfere with each other

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Research Questions
q How to systematically categorize CAI threats?

q How to precisely detect them?

q How to assist users to handle them?

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Categorization of CAI Threats

Rule 1: T1-C1-A1; Rule 2: T2-C2-A2

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Challenges
q Extract rules from app code precisely

q Obtain user configuration without co-operation of IoT platforms

q Automatic CAI threat detection

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

System Overview

q Rule Extractor
§ extracts rule semantics from app source code

q Configuration Collector
§ collects configuration upon a new app is installed

q Threat Detector
§ analyzes whether any pair of rules causes CAI threats

q Frontend (A Mobile App)
§ presents detection result

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Rule Extraction – Symbolic Execution

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Configuration Collection – Code Instrumentation

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

CAI Threat Detection
When a new app is installed, our system detects CAI threats between every pair of rules

q Each CAI type is encoded as a set of symbolic constraints
q Thus, CAI detection is transformed into solving SMT (satisfiability modulo theory) problems

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Frontend App Presents Detection Result

AutoLock – Rule 1

GoodNight – Rule 2
AutoMode – Rule 5

BurglarAlarm – Rule 6

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

CAI threats in Market Apps
Run our CAI detection on 146 SmartApps in SmartThings official app repository
q 663 CAI instances in total
q 101 out of 146 apps are involved into at least one type of CAI threat

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Real-world Testbed

q 18 official apps
q 24 devices

Devices and their layout Detected (and verified) CAI threats

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Evaluation of Performance

Rule extraction speed
q 1,341 millisecond per app on average

CAI detection speed
q Averaged 671 millisecond

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Related Work
Table I: Comparison between HOMEGUARD and related work.

Publication # of CAI Systematic Symbolic Threat CAI Threat Detection Risk
Date1 Threat Types Categorization? Modeling? Precise Semantics

Extraction?
Leverage App
Configuration?

No Need For
Specification?

Ranking?

SIFT [21] Apr 2015 1 7 7 72 3 3 7
Surbatovish et al. [20] Apr 2017 1 7 7 7 7 3 7

IoTA [22] Oct 2017 3 7 7 7 3 3 7
Soteria [17] May 2018 3 7 7 3 7 7 7
IoTSan [18] Oct 2018 2 7 7 3 3 7 7
IoTMon [16] Oct 2018 1 7 7 33 7 3 3

IoTGuard [19] Feb 2019 3 7 7 3 3 7 7
SafeChain [23] Oct 2019 1 7 7 7 7 7 3

iRuler [24] Nov 2019 8 3 3 74 3 3 7
HOMEGUARD Aug 2018 10 3 3 3 3 3 3

1 The earliest time when the work was published, including arXiv preprints. 2 Needs users to define rules on interfaces provided by the researchers.
3 Does not extract rule conditions. 4 Natural language processing (NLP) based approaches are less precise than code analysis (Section 9 in [24]).

a condition does not; also, condition is optional and can be
empty. The action is typically one or more commands issued
to actuators or notifications to users.
Interaction. The data layer and the control layer interact
in both directions. On the one hand, rules obtain data from
sensors and the environment (e.g., time). On the other hand,
rules send commands to actuators which further affect the
sensors and the environment.

IV. CATEGORIZATION OF CAI THREATS

Given a pair of automation rules R1 and R2, we com-
prehensively examine how R1 may interfere with R2 and,
accordingly, have identified three basic categories: Trigger-
, Condition-, and Action-Interference Threats, which arise
when the trigger, condition, and action of R2 is interfered
with by the action of R1, respectively (see Basic Pattern in
Table II). R1 and R2 may or may not belong to the same
app, and our HOMEGUARD system can handle both cases,
so we do not distinguish the two cases for the simplicity
of presentation. Next, by looking at the specific interference
contexts and effects in each category (see Auxiliary Pattern
in Table II), we identify multiple types of CAI threats, as
summarized in Table II.

A. Action-Interference Threats

Two rules may operate on the same actuator, but
issue conflicting commands (i.e., converse commands
such as open/close or the same command such as
setOvenSetpoint with different arguments) due to dif-
ferent automation purposes. When both rules are triggered
by the same event and pass the condition check, conflicting
commands issued by the two rules impose an Race on the
same actuator (A.1 in Table II); thus, the final status of
the actuator turns out to be uncertain (may be a bad state),
varying with factors such as the arrival order of commands
and the device’s communication and processing sensitivity.
To validate, we ran two SmartApps on SmartThings which
turn on and off a light switch respectively when a door
sensor detects the door being opened. We observed a variety
of results: the switch is turned on only, turned off only,
turned on then off, and turned off then on.

Another Action-Interference type (A.2 in Table II) is more
subtle than A.1 since two rules are not triggered by the same
event and therefore not executed simultaneously, but perform
conflicting commands. The two rules work separately but
the latter rule overrides the command issued by the former
one immediately or after a while, which might or might not
cause a real threat. Fig. 2(a) shows an example of A.2.

B. Trigger-Interference Threats

A rule’s action may change the home context, producing
an event that triggers other rules; thus, new covert rules
are derived from a group of explicitly defined rules. Covert
Rules may or may not be desired by users.

Fig. 2(b) shows an example of T.1. A covert rule “when
a voice command is issued then disarm the cameras” is
formed. If the user perceives the safety implication and only
uses the voice command when she is at home, it is not a real
threat but a feature for her. However, if she is not clearly
aware of the covert rule and uses the voice command while
not home, a real safety threat arises.

Suppose rule R1 triggers rule R2 first; if R2’s action in turn
has impacts on R1’s action or trigger, three special cases of
Trigger-Interference, i.e., T.2, T.3, T.4 (in Table II), can be
derived. In T.2, R2’s action incurs a race with R1’s action on
the same actuator; as a result, the execution of R1 yields an
opposite effect. In T.3 and T.4, the execution of R2 triggers
R1 such that R1 and R2 trigger each other in a loop; the
difference between T.3 and T.4 is that R1 and R2 perform
conflicting actions in T.4 but not in T.3. Fig. 3(a) and 3(b)
shows an example of T.2 and T.4, respectively. These threats
may lead to user confusion (e.g., cannot turn on the heater),
device damages (e.g., due to frequent toggling), or even
security and safety threats (e.g., light flashing in Fig. 3(b)
causes seizures to photosensitive epilepsy sufferers [25]).

C. Condition-Interference Threats

A rule R1’s action may change the satisfaction of another
rule R2’s condition and thus affect the execution of R2, which
is referred to as Condition-Interference Threats. Unlike
Trigger-Interference, the action of R1 does not necessarily
trigger the execution of R2, as R2 has its own trigger.

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Conclusion

q First comprehensive categorization of CAI threats (first posted on arXiv in Aug 2018)
q First symbolic representation of CAI threats
q First work that leverages SMT for CAI threat detection
q An end-to-end implementation without co-operation of IoT platforms

Thank You!

Q & A

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Another Example
A SmartApp in SmartThings public repository:

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Intra-App Attacks
Intra-app attacks (a.k.a., malicious apps, or malware) is a
well-known threat
q Gain unauthorized access to smart home devices

§ Send malicious commands to home IoT devices
ü Unlock a door when the owner is absent
ü Turn on the oven over a long time to cause a fire

accident
ü DoS the devices to demand a ransom payment to

restore them
§ Exfiltrate sensitive data from the sensor devices
ü Medical device data expose the health condition

of the homeowner
ü A presence sensor reveals the occupation of a

house

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

CAI Threat Detection (Cont’d)

q 𝐴! and 𝑇" are handling the same device and attribute

§ For example, turning on a ON/OFF switch triggers a rule that subscribes to the switch’s “ON” event
q 𝐴! controls an actuator that changes the reading of a sensor subscribed to by 𝑇" via a physical channel

§ For instance, turning on a heater triggers a rule that subscribes to the reading of a temperature sensor

q We often need to detect if two rules’ conditions have overlaps. For example,

§ tSensor1.temperature > 70, tv1.switch == “on”, 13.00 < time < 19.50
§ tSensor1.temperature < 75, tv1.switch == “off”

q The overlapping detection is transformed into a constraint satisfaction problem

§ We use the Java Constraint Programming (JaCoP) library as the solver

: condition overlapping detection

and are relatively straightforward to determine by respectively looking at whether:
q Two rule triggers subscribe to the same event (same device, attribute and value)
q Two rule actions control the same device with contradictory commands

has two cases:

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Risk Ranking – Help Users to Handle CAI Threats
A detected CAI instance is labeled with a risk level 𝐿 ∈ {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ}.
q Two observations

§ Each CAI threat type has specific effects on the involved rules:
ü Positive (+): unexpectedly triggers the execution of a rule
ü Negative (-): unexpectedly invalidates the execution of a rule
ü Loop (o): makes two rules trigger each other to form a loop execution

§ The risk of implication of three effects (+, -, o) depends on two factors:
ü The functionality of the involved rule
ü The sensitivity of the rule action

Consider an example. R1 (“unlock the door and open the window when smoke is detected”) and R2
(“open the window when air quality is low”)
q If R3 imposes negative effects on “open the window”, it imposes a higher risk to R1 than R2 since

R1 is for safety purpose and R2 is for comfort purpose.
q If R3 imposes positive effects on “open the window”, it does not break the functionality of both rules

but is still considered dangerous due to the sensitivity of the action “open the window” itself.

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Risk Ranking (Cont’d)
CAI threat instance ← 𝐼(𝑡𝑦𝑝𝑒, 𝑅!, 𝑅"), where 𝑅! = (𝑇!, 𝐶!, 𝐴!) and 𝑅" = 𝑇", 𝐶", 𝐴" ;

A risk level ← 𝐿 ∈ −1, 0, 1 (𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ);

The effect of 𝐼 on each rule 𝑅# ← 𝑒# , determined by 𝑡𝑦𝑝𝑒

The category of a rule ← 𝑐#

The command type of 𝑅#’s action ← 𝑐𝑚𝑑#

The risk imposed by 𝐼 on each rule 𝑅# is defined as:
𝐿# = max 𝑀! 𝑒# , 𝑐# , 𝑀" 𝑒# , 𝑐𝑚𝑑# ,
where 𝑀! and 𝑀" are two mappings designed based on the two observations.

The mapping table of 𝑀!:

© 2015 Marketo, Inc. Marketo Proprietary and Confidential

Risk Ranking (Cont’d)
To establish the mapping table of 𝑀!, i.e., the risk level regarding CAI effect 𝑒# and command type
𝑐𝑚𝑑# , an algorithm is designed to extract such knowledge from 146 official SmartApps.

The simple insight in the algorithm is that security-sensitive commands are used more frequently in
SmartApps of the “Safety & Security” category than those of other categories; with non-sensitive
commands, the opposite is true.

Part of the results (out of 46 commands)

