Cross-App Interference Threats in Smart Homes:
Categorization, Detection and Handling

Haotian Chi, Qiang Zeng, Xiaojiang Du, Jiaping Yu

-
T TEMPLE UNITE?({:??I“"IY‘ OF

R SR e South Carolina

Home Automation

d Home-automation apps
» Lock the door when all leave
» When arriving home, if the room is too hot, turn on A/C

Single-device automation Subsystem-level automation Home-wide automation
Smart Home Lighting System
@' ‘
o Dl Wl
o) Lﬂutgm_.
Heatlng control nghtmg ‘control

o ~ Ehrﬂl
- _‘!’,'/ rﬁk\{

Camera surveillance Smart kitchen

Smoke detection

Rule Abstraction

A home-automation app contains one or more rules, each in the form of 7-C-4

* Trigger: “when resident arrives home”
* Condition: “if room temperature < 18¢”
* Action: “turn on heater”

Rule = TCA template + Configuration

O Configuration: app-device binding relations, threshold, etc.

Cross-App Interference (CAl) Threats

When multiple rules interplay in a home, they may interfere with each other

."""‘frigger

Condition ™.

Trigger

Condition

Action

Action
presence unlock
detected None door

llluminance
exceeds 50 LUX

Lights are on

>

Turn off the lights

no motion

detected

turn off lights
and lock doors

lights on -> ;

==--.___ illuminance up

-’
S~

llluminance goes
below 30 LUX

Lights are off

>

,thrn on the lights

--~" lights off ->
illuminance down

Trigger Condition Action
not None set
present [away-mode
pas
Mode event: .
sleep -> away . ’
P 7’
door N turn on
opened —>| sleep-mode |>< burglar alarm

Research Questions

d How to systematically categorize CAI threats?
d How to precisely detect them?

(J How to assist users to handle them?

Categorization of CAl Threats

Rule 1: T1-C1-A1; Rule 2: T2-C2-A2

Category Basic Pattern Auxiliary Pattern! ID Validation | Description
Ty =T, CNCy A.l v R, and R, are executed simultaneously to perform conflict actions.
Action-Interference A A T =T, ~(CIANC) - X R; and R» cannot be both executed although they are both triggered.
Threats ! 2 T #T, C,ANCy A2 v Ry and R> may be executed within a short period to perform conflict actions.
T # T, ~ (CyANC) - X R, and R, are unrelated and have no interaction.
CINCy, ~(Ay—=T), Ay # A, || T v R, triggers R, which does not interfere with R; in turn.
Tricoer-Interference CING, ~(Ay—=Th), Ay =—Ay || T.2 v R, triggers R, which performs a conflict action and thus invalidate R;.
o8 Threats A= 1 CINGy, Ay =T, A| # A, T.3 v R, and R, trigger each other alternately.
’ CINCL, A= T, A = A, T4 v R, and R, trigger each other and perform conflict actions alternately.
~ (CINGy) X R, fails its condition checking and cannot be executed.
A= G =T C.1 v’ R, turns a constraint in R>’s condition to true, which increases the
Condition-Interferencg - T #T» C.2 v probability of R, being executed.
Threats s C =T C3 v R, turns a constraint in R,’s condition to false, which decreases the
LT 2 T #T C4 v/ probability of R, being executed.

Challenges

L Extract rules from app code precisely
 Obtain user configuration without co-operation of IoT platforms

d Automatic CAI threat detection

System Overview

App Database Server-hosted C_) Online
i Client-hosted «~~~"""") Offline+Online
.......... } .. \\!{! Rule ! (Threat | [HomeGuard)
iInstrumentation; : Extractor \ Detector Frontend
: Script : Automation || «{ Rule Interpreter
| 'Recorder [
Instrumented Config. v User Interface
Apps Collector CA'EDE!EC“OH {
ngine ™ Threat Interpreter
loT Platform J U)

 Rule Extractor

= extracts rule semantics from app source code
 Configuration Collector

= collects configuration upon a new app is installed
 Threat Detector

= analyzes whether any pair of rules causes CAI threats
U Frontend (A Mobile App)

= presents detection result

Rule Extraction - Symbolic Execution

Rule Representation

Trigger :

(:subject). (:attribute)
(:constraint)

Condition:

(:data constraints)
(:predicate constraints)
Action:

M (:subject)->(:command) (:paras) (:when) (:period)
input "tvi", "capability.switch", title: "Which TV?" o (:data constraints)
input "tSensor", "capability.temperatureMeasurement" }
input "thresholdl", "number", title: "Higher than?"
input "windowl", "capability.switch" Model
def installed() { ;
| subscribe (tvi, "switch", onHandler) \ Population

) ©
def updated() {

unsubscribe () 3 e -

subscribe (tvli. "switch", onHandler) e Tnggcr Condition Action
} + | \ data constyaints: subject: window |
def onHandler(evt) { et - . s

s & = SBenser, TRV) N ub_|.ect‘ vl . |l = tSensor.(emd'eralure| command: on

if ((evt.value == "on")) && [t > threshold) o ttribute: switch | [[tSensor.temperature=#fDevState | || paras: []

turnDnW]Indow() o Co int: ATthraints: data constraints:| |

(}i s T ————{tvL.switch==on t > threshold| when: 0
ef turnOnWindow o - —— 2y

if (window1.currentSwitch == "off") | =|thnd0W|.SWIlCh e Offl period: 0

}

L

5]

€) Symbolic Input Identification e Trigger Event Identification 9 Data Constraint Construction and API Modeling
0 Control Flow Analysis

@ Predicate Constraint Construction e Sink Analysis

Configuration Collection - Code Instrumentation

$liswsy
//Specify the phone that runs HomeGuard
input "patchedphone", "phone", required: true, title: "Phone
number?"
Ll
def updated() {
Gttt
// inserted code
def appname = "ComfortTV"

def devices = [[devRefStr:"tvl", devRef:tvi], . o)
[devRefStr:"tSensor", devRef:tSensor], » Collect app-device binding info.

devRefStr:"windowl", devRef:windowl]])
def values = [[varStr:"thresholdl", var:thresholdl]]|—> Collect user-lnput values

collectConfiglnfo(appname, devices, values)

}
Ll
def collectConfigInfo(appname, devices, values) {
rdef uri = "http://my.com/appname: $iappnamer/
devices.each { dev ->
uri = uri + dev.devRefStr + ":" + dev.devRef.getId()
] L L » Pack all configuration info.
values.each { val->
uri = uri + val.varStr + ":" +val.var + "/" . T
} Send the configuration info.
|sendSmsMessage (patchedphone, uri) | » out through the supported

} SMS or HTTP APIs.

CAl Threat Detection

When a new app is installed, our system detects CAI threats between every pair of rules

L Each CAI type is encoded as a set of symbolic constraints

L Thus, CAI detection is transformed into solving SMT (satisfiability modulo theory) problems

Category Basic Pattern Auxiliary Pattern! ID Validation | Description
T =T, C,ANC, A.l v R, and R, are executed simultaneously to perform conflict actions.
Action-Interference A — A T =T, ~(CIANG) - X Ry and R> cannot be both executed although they are both triggered.
Threats ! 2 T #1, C NG A2 v R, and R, may be executed within a short period to perform conflict actions.
T # T, ~(CANG) - X R, and R, are unrelated and have no interaction.
CNG, ~(A2—=T), Al # A || T v R triggers R, which does not interfere with R; in turn.
Trigger-Interference CINGy, ~(Ay—=T), Ap = Ay || T.2 v R, triggers R,, which performs a conflict action and thus invalidate R;.
e Threats Al—=T CINCy, Ay =Ty, Al # Az T.3 v R, and R, trigger each other alternately.
’ CINCL, A= T, A = A, T4 v R, and R, trigger each other and perform conflict actions alternately.
~ (CING) X R, fails its condition checking and cannot be executed.
- . A =G =T C.1 e R\ Iumls.a copstrainl. in R;’s condition to true, which increases the
Condition-Interferenc - T #T» C.2 v probability of R, being executed.
Threats A - C =T C3 e R, turns a constraint in R,’s condition to false, which decreases the
! 2 T\ #T1 C4 v probability of R, being executed.
"' The auxiliary pattern ¢teteh-CAd=type-doesrneot-contorm—to-the=baste-pattera—+ other categories if not explicitly specified. We elide the negation constraints for conciseness.

Frontend App Presents Detection Result

AutoLock —Rule 1
GoodNight — Rule 2
AutoMode — Rule 5
BurglarAlarm — Rule 6

Installing: AutoLock

When pSensor1.presence == present

Do unlock lock1
Action-Interference (A.2) High Risk
AutoLock unlock lock1
GoodNight lock lock1
When pSensor1.presence == present

timeOfDay == 23:00
mSensor1.motion == inactive
mSensor2.motion == inactive

" Trigger Condition ™. Action
Rule 1 presence unlock
.| detected [None door
Overlapping --------------------- g
situations ™ - .
’ no motion N | turn off lights
Rule 2 Lpm = detected /| and lock doors

Installing:

AutoMode

When personi.presence == not present
Do set away mode

Condition-Interference (C.4) High Risk
BurglarAlarm cannot siren alarm1

failing
caused by
through
When

mode == sleep
AutoMode
set away mode

personl.presence == not present,
door1.contact == open

Rule 5

Trigger Condition Action
not set
— None
present away—mode
Mode event: e

sleep -> away . ’
e
e

Rule 6

door
opened

turn on

—»| sleep-mode [><»
burglar alarm

CAl threats in Market Apps

Run our CAI detection on 146 SmartApps in SmartThings official app repository
L 663 CAI instances in total

L 101 out of 146 apps are involved into at least one type of CAl threat

103 100
=1 Low risk “ B\ =1 Low risk
0
9 X1 Medium risk s X1 Medium risk
S [High risk g 80 [High risk
kil ©
g 102 T €
® 5 60
& K b
Q =
I o
a N\ Y g 40
S 10t — ‘ 5
g | — @
£ —] § é £ 20 <] 3
= REEENERE : NN
2 [KHEHE = 2 N
1oo LEAE — o e | NN |52 | AN — g
Al A2 T1 T2 T.3 T4 C1 C2 C3 C4 Al A2 T1 T2 T3 T4 C1 C2 C3 C4

CAl Threat Types CAl Threat Types

Real-world Testbed

O 18 official apps
O 24 devices

Devices and their layout Detected (and verified) CAI threats

1. Motion sensor 13. Humidifier App Name Rule and Configuration Set # | CAI Type

2. Oven 14. Ventilator CurlingIron When motion () detected, turn on oven [©) ar}1d fan (3) for 3(1 minutes.) Al

3. Fan 15. Light Virtual Thermostat When motion (1) detected, if temperature (%) is lower than 72°F, turn off fan (3).

4. Temp. sensor 16. Luminance sensor NFCTagToggle When the user touches on mobile app, toggle switch @ and door lock @ N A2

5. Switch 17. Contact sensor LockItWhenILeave When presence sensor @ becomes “not present”, lock door @ "

6. Door Lock 18. Luminance sensor CurlingIron When motion (1) detected, turn on oven (2) and fan (3).

7. Presence sensor 19. Light SwitchChangesMode When oven (2) is turned on, set home to “party” mode. 3 T.1

8. Thermostat 20. Floor Lamp MakeItSo When change to “Party” mode, unlock door @ and turn on thermostat .

9. Temp. sensor 21. Motion sensor It’sTooHot When temperature @ exceeds 80°F, turn on fan @ 4 T2

10. Fan 22. Alarm EnergySaver When power usage (if) exceeds 3000 W, turn off fan (i0). -

11. Power meter ~ 23. Light SmartHumidifier When humidity (i2) is below 30%, turn on humidifier (13); when humidity (i2) exceeds 50%, turn off humidifier (i3). s 3

12. Humidity sensor 24. Fan HumidityAlert! When humidity (12) exceeds 50%, turn on ventilator (i3); when humidity (i2) is below 30%, turn off ventilator (i3). -
LightUptheNight When illuminance (i6) exceeds S0 Ix, turn off light (i3); when illuminance (i6) gets below 30 Ix, turn on light (i3). 6 T4
Brighten Dark Places When door (17) is opened, if illuminance (18) is below 10 Ix, turn on light @ 7 c1
LetThereBeDark When door (17) is opened, turn off lights (20); when door @ is closed, restore the state of lights @ -
Forgiving Security When motion sensor @ or @ becomes “active”, if the home is in “Away” mode, siren alarm @ 3 C2. C4
Scheduled Mode Change Set home to “Away” mode at 10 am and set home to “Night” mode at 6pm. o
Forgiving Security ‘When motion sensor becomes “active”, if home is in “Work™ mode, turn on light @ after 1 second. 9 C3(C1)
Rise and Shine ‘When motion sensor Q becomes “active”, set home to “At-Home” mode (“Work™ mode). - .
GoodNight When motion (T)31) detected, if switches ()G INBINBANE)E)E) are all off, set home to “sleep” mode.
Once a Day Turn on fan @ at 11 pm and turn off fan @ at 12 am. 10 Cc4
MakeItSo When changed to “sleep” mode, lock door @

Evaluation of Performance

Rule extraction speed
O 1,341 millisecond per app on average

CAI detection speed
L Averaged 671 millisecond

]
]

L
Ly
g8 LAl

7
A
o
1]
]
: 2

idate FIt g

e Ca ddt Filteri
onstraint Solving

e Constra tSI g

o

>
i

>
N
—
[

T2 T.3 T4 C1 C2 C3 C4
CAl Threat Types

Related Work

CAI Threat Detection

Publication # of CAI Systematic Symbolic Threat - - Risk
Date! Threat Types | Categorization? Modeling? Precise Semantics | Leverage App | No Need For | Rapking?
Extraction? Configuration? | Specification?
SIFT [21] Apr 2015 1 X X X’ v v X
Surbatovish et al. [20] Apr 2017 1 X X X X v X
I0TA [22] Oct 2017 3 X X X v v X
Soteria [17] May 2018 3 X X v X X X
IoTSan [18] Oct 2018 2 X X v v X X
ToTMon [16] Oct 2018 1 X X /3 X v v
IoTGuard [19] Feb 2019 3 X X v v X X
SafeChain [23] Oct 2019 1 X X X X X A
iRuler [24] Nov 2019 8 v/ v/ X4 v v X
HOMEGUARD Aug 2018 10 v v v v v v

Conclusion

O First comprehensive categorization of CAI threats (first posted on arXiv in Aug 2018)
O First symbolic representation of CAI threats
O First work that leverages SMT for CAI threat detection

L An end-to-end implementation without co-operation of IoT platforms

Thank You!

Q& A

Another Example

A SmartApp in SmartThings public repository:
definition(

name: "Light Up the Night",

namespace: "smartthings"”,

author: "SmartThings”, Trigger Condition Action

description: "Turn your lights on when it gets dark and off when it becomes light again.”, llluminance]
category: "Convenience", exceeds 50 LUX [Lights are on —»| Turn off the lights
iconUrl: "https://s3.amazonaws.com/smartapp-icons/Meta/light_outlet-luminance.png"”, ~F =T - 7
iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Meta/light_outlet-luminance@2x.png" “~~""~~._ . hghtS()n-> /

; ‘~—-.‘___\|Ilum|nance up /,'

def installed() llluminan -
uminance goes | | Lights are off [—»]| FUrn on the lights

subscribe(lightSensor, "illuminance", illuminanceHandler) below 30 LUX
3 A\ i .
’ '\ _--" lights off ->
_’,-—"' illuminance down
def illuminanceHandler(evt) { teeello-- -7

def lastStatus = state.lastStatus
if (lastStatus != "on" &% evt.integerValue < 38) {
lights.on()

state.lastStatus = "on"

else if (lastStatus != "off" && evt.integerValue > 58) {
lights.off()
state.lastStatus = "off"

[y

Intra-App Attacks

Intra-app attacks (a.k.a., malicious apps, or malware) is a
well-known threat

J Gain unauthorized access to smart home devices
= Send malicious commands to home IoT devices
v" Unlock a door when the owner is absent

v Turn on the oven over a long time to cause a fire

accident

v DoS the devices to demand a ransom payment to

restore them

= Exfiltrate sensitive data from the sensor devices

v" Medical device data expose the health condition

of the homeowner
v' A presence sensor reveals the occupation of a
house

— — — —

NDSS'17: ContexloT
m |oT attack categorization
m Dynamic taint analysis
m Context-based permjs

SP'16: Vulnerability Disclosure
\ ® Coarse-grained capability

) m Insecure event system

m Sensitive APIs

m Model checking
m User-specified security properties
m Properties violation detection

CCS'18: HoMonit
m Traffic analysis as side channel
m Device monitoring
m App behavior inference

CAl Threat Detection (Cont’d)

I' =T, and A; = —A; are relatively straightforward to determine by respectively looking at whether:
U Two rule triggers subscribe to the same event (same device, attribute and value)
O Two rule actions control the same device with contradictory commands

Ay — T> has two cases:
QO A; and T, are handling the same device and attribute

= For example, turning on a ON/OFF switch triggers a rule that subscribes to the switch’s “ON” event
L A; controls an actuator that changes the reading of a sensor subscribed to by T, via a physical channel

= For instance, turning on a heater triggers a rule that subscribes to the reading of a temperature sensor

Ci ACz: condition overlapping detection
O We often need to detect if two rules’ conditions have overlaps. For example,

= tSensorl.temperature > 70, tvl.switch == “on”, 13.00 < time < 19.50
= tSensorl.temperature < 75, tvl.switch == “oft”

L The overlapping detection is transformed into a constraint satisfaction problem

= We use the Java Constraint Programming (JaCoP) library as the solver

Risk Ranking - Help Users to Handle CAl Threats

A detected CAI instance is labeled with a risk level L € {low, medium, high}.

1 Two observations
= Each CAI threat type has specific effects on the involved rules:
v' Positive (+): unexpectedly triggers the execution of a rule
v Negative (-): unexpectedly invalidates the execution of a rule

v Loop (0): makes two rules trigger each other to form a loop execution

CAIType | A1 A2 T1 T2 T3 T4 C1 C2 C3 Cd4d
Action A, — — — + o

Action A, — — + + + 0 + + - —

= The risk of implication of three effects (+, -, 0) depends on two factors:
v" The functionality of the involved rule
v" The sensitivity of the rule action

Consider an example. R1 (*unlock the door and open the window when smoke is detected”) and R2

(“open the window when air quality is low”)

O If R3 imposes negative effects on “open the window”, it imposes a higher risk to R1 than R2 since
R1 is for safety purpose and R2 is for comfort purpose.

O If R3 imposes positive effects on “open the window”, it does not break the functionality of both rules
but is still considered dangerous due to the sensitivity of the action “open the window” itself.

Risk Ranking (Cont’d)

CAI threat instance < I(type,R{,R,), where R, = (Ty,C;,A,) and R, = (T,,C,, A,);

Arisk level « L € {—1,0,1} (low, medium, high);

The effect of I on each rule R; < e;, determined by type

The category of a rule « ¢;

The command type of R;’s action « cmd;

CAIType | A1 A2 Ti1 T2 T3 T4 C1 C2 C3 Cd
Action A, - - — T o
Action A> — + + + o + + — _

The risk imposed by I on each rule R; is defined as:
L; = max(M, (e;, ¢;), M, (e;, cmd,;)),
where M; and M, are two mappings designed based on the two observations.

The mapping table of M;:

Category Effect(+) Effect(—) Effect(o)
safety rules low high high
non-safety rules low medium medium

Risk Ranking (Cont’d)

To establish the mapping table of M, i.e., the risk level regarding CAI effect e; and command type
cmd;, an algorithm is designed to extract such knowledge from 146 official SmartApps.

The simple insight in the algorithm is that security-sensitive commands are used more frequently in
SmartApps of the “Safety & Security” category than those of other categories; with non-sensitive
commands, the opposite is true.

Algorithm 1: The algorithm for extracting device control sensitivity
under different CAI effects from SmartApps

Part of the results (out of 46 commands)

Input : Apps < the source code of all SmartApps
Output: Risk knowledge model of capability-supported commands KM
1 foreach app € Apps do

Rules < ExtractRuleSemantics (app)
catetory ¢ ExtractCategory (app)
foreach rule € Rules do

cmd ¢ rule.action.command

capCmd < Concatenate (capability, cmd)
oppCapCmd < FindOppositeCmd (capCmd)

if category is “Safety & Security” then
count [capCmd] ["+"] [" low’] ++

S e ®ua v oE W

high’]++

count [capCmd] ["="1["
"high’]++

count [capCmd] [0’]
count [oppCapCmd]

[

[

[1["high’]++
count [oppCapCmd

[

[

[

J["low’]++
] ["high’]++

l
l
[+
1=
count [oppCapCmd] [’ ©
1 else
12 count [capCmd] ["+"] [" low’] ++
count [capCmd] [’ ="] ['medium’] ++
count [capCmd] [o’] [medium’] ++
13 foreach capCmd € count.keys () do
14 foreach e € {'high’, ’"medium’, ’low’} do

15 KM[capCmd] [e]= max(count [capCmd] [e] [high’],

count [capCmd] [e] [' medium’],
count [capCmd] [e] [’ 1low’])

Capability.command Effect(+) Effect(—) | Effect(o)

alarm.off

H

capability < FindCapability (rule.action.device)

alarm.siren

light.off

location.setLocationMode

lock.lock

lock.unlock

switch.on

valve.close

valve.open

fun) onll Hunll el onll Honl Nl Hen

==l g ==l - g == N o

jas] Bus] i] Rusi Kd I Jus] an

