
Cross-App Interference Threats in Smart Homes:
Categorization, Detection and Handling∗

Haotian Chi∗, Qiang Zeng†, Xiaojiang Du∗ and Jiaping Yu∗
∗Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

†Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
Email: {htchi, dux, jiaping.yu}@temple.edu, zeng1@cse.sc.edu

Abstract—Internet of Thing platforms prosper home au-
tomation applications (apps). Prior research concerns intra-app
security. Our work reveals that automation apps, even secured
individually, still cause a family of threats when they interplay,
termed as Cross-App Interference (CAI) threats. We systemati-
cally categorize such threats and encode them using satisfiabil-
ity modulo theories (SMT). We present HOMEGUARD, a system
for detecting and handling CAI threats in real deployments.
A symbolic executor is built to extract rule semantics, and
instrumentation is utilized to capture configuration during app
installation. Rules and configuration are checked against SMT
models, the solutions of which indicate the existence of corre-
sponding CAI threats. We further combine app functionalities,
device attributes and CAI types to label the risk level of CAI
instances. In our evaluation, HOMEGUARD discovers 663 CAI
instances from 146 SmartThings market apps, imposing minor
latency upon app installation and no runtime overhead.

I. INTRODUCTION

The rapid proliferation of Internet-of-Things (IoTs) has

advanced the development of smart homes to a new era.

Moreover, smart home platforms connect IoT devices and

offer programming frameworks for deploying home automa-

tion applications. Representative platforms include Samsung

SmartThings [2], Apple HomeKit [3], and IFTTT [4]. How-

ever, appified frameworks also introduce new app-level sur-

faces, which could be misused by homeowners and exploited

by attackers. For example, a burglar can exploit a vulnerable

IoT app to open a smart lock [5], which is impossible in

non-appified homes.

Many works contribute to enhancing the app-level secu-

rity in smart home systems [5]–[15]. Fernandes et al. [5]

revealed the overprivilege problem in the permission (a.k.a.,
capability) system of SmartThings and demonstrated ex-

ploits that expose smart homes to severe attacks. Follow-

up works propose to resolve overprivilege by patching the
existing permission system [11], developing new permission

mechanisms [9], detecting overprivileged apps [12], [13], or

enforcing non-overprivileged authorization [12]. This work,

however, shows that Cross-App Interference (CAI) threats
may be caused even if apps are secured individually: CAI

threats arise when IoT apps–coded for distinct automation

∗An early version of this paper was posted on arXiv in August 2018 [1].

purposes but interplaying over the same home–are misused

by homeowners.

Individual IoT app developers are unlikely to avoid CAI

threats completely due to the lack of a predictive and global

view of what apps will be installed and how they are

configured by a user. As an increasing number of devices

and apps are installed at a smart home, CAI threats will

exacerbate. The goal of this paper is to (1) systematically

categorize CAI threats; (2) propose techniques to precisely

discover CAI threats; (3) evaluate the risks of identified CAI

instances to assist users to make informed decisions.

In this paper, each IoT app is modeled as automation rules

following a trigger-condition-action (TCA) paradigm. We
systematically categorize CAI by considering how the action

of one rule may affect the trigger, condition, and action
of another rule, and obtain three corresponding categories

of CAI threats with totally ten types. Each CAI type is

encoded into a SMT (Satisfiability Modulo Theory) model

which comprises a set of constraints. The constraints de-

scribe cross-app-boundary semantic relations, i.e., how the

automation in one app interferes with that in another app.

With the SMT models of CAI threats, detecting CAI

threats is converted to a theorem-proving problem, i.e.,

checking every pair of automation rules, along with the asso-

ciated configuration, against SMT models; if a SMT model

is solvable, the rule pair could cause the corresponding CAI

threat. Therefore, how to extract TCA rule semantics defined

by IoT apps and how to collect user configuration during app

installation are two vital questions to answer for automated

CAI detection. In this paper, we explore viable techniques

to work with Samsung SmartThings, which at the time of

research supports the largest number of IoT devices and

apps. We develop a symbolic executor to perform static

analyses on the AST (Abstract Syntax Tree) representations

of SmartApps to extract TCA rule semantics along all paths.

Moreover, to overcome the challenge that SmartThings does

not provide interfaces for collecting user configuration, we

exploit an app instrumentation approach to resolving it.

The proposed system HOMEGUARD interposes whenever

a new app is to be installed and analyzes whether there exist

CAI threats between the new app and already-installed ones.

We develop a proof-of-concept prototype of HOMEGUARD.

411

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00056

Our evaluation shows that HOMEGUARD can precisely dis-

cover CAI threats from real-world SmartApps, and generate

the analysis results instantly.

Our main contributions are summarized as follows:

• A comprehensive categorization and modeling of CAI
threats – To our best knowledge, this is the first work
that comprehensively categorizes CAI threats and the first

work that uses symbolic constraints to model CAI threats.

• A precise rule extractor – We design and imple-

ment a symbolic executor for extracting rule semantics

from SmartApps. Compared to code analyses in previous

work [9], [12], [16], our approach is more complete and

precise by deriving constraints from path-level analysis

and modeling APIs residing in the opaque cloud.

• Accurate and usable detection techniques – Recent
work [17]–[19] introduces model checking based tech-

niques for detecting CAI, and requires users to provide

safety specifications/policies. Unlike these solutions, we

are the first to leverage SMT solving for CAI detection.

Our detection technique does not need specification input

and could comprehensively detect CAI threats hidden

from specification definers (usually end users). Plus, we

combine rule semantics and home-specific configuration

to detect threats, reducing false alarms compared to prior

work that only considers rule semantics [16], [17], [20].

• Risk ranking – we propose a risk ranking model to

evaluate risk levels of discovered CAI threats, which takes

into consideration three key factors of a CAI instance: its

influence on rule execution, functionality categories of the

involved rules, and security criticality of the devices being

controlled. The risk ranking model assigns a risk level

(high, medium, or low) to every CAI instance, assisting
end-users to prioritize handling higher-risk threats.

• Implementation and evaluation – we build a prototype
HOMEGUARD with a viable deployment path that does

not require framework modifications of SmartThings. We

evaluate the effectiveness and efficiency of HOMEGUARD

over market apps. HOMEGUARD identifies 663 potential

CAI threat instances in 146 real market apps. The end-

to-end CAI detection incurs an averaged app installation

latency of 2.7s and no runtime latency.

II. RELATED WORK

With the popularization of appified IoT platforms, security

issues caused by app interference draw much research atten-

tion in very recent years. Table I illustrates the comparison

of our work with related work. SIFT [21] is a safety-

centric programming platform with action-conflict detection

and resolution. Surbatovich et al. [20] study the security

and privacy threats caused by the chained execution of

IFTTT recipes. IoTA [22] introduces a process calculus for

modeling IoT automation languages, and transforms the cal-

culus to model checking for conflict detection. Soteria [17],

IoTSan [18] and IoTGuard [19] employ model checking

Figure 1: The home automation model.

to detect action conflicts and chained execution; the CAI

threat detection relies on the correctness and completeness
of deployment-specific safety specifications input by users.

In contrast, our work detects threats without relying on the

expertise of end users. IoTMon [16] focuses on physical

channels via which actuators and sensors interact, leading to

chained execution of apps. SafeChain [23] detects privilege

escalation and privacy leakage attacks caused by chained

execution. None of these works performs systematic cate-

gorization of CAI threats. Like our work, iRuler [24] also

uses symbolic constraints to describe different types of CAI

threats. iRuler uses NLP to extract rules from IFTTT applets,

but cannot handle code like SmartApps. Plus, it does not

rank the detected threats.

In short, HOMEGUARD (posted on arXiv in August
2018 [1]) is the first work that comprehensively categorizes
different types of CAI threats. It is also the first work that

uses symbolic constraints to precisely describe CAI threats,

and the first that leverages SMT solving for threat detection.

III. HOME AUTOMATION MODEL

A home automation model can be abstracted into a data
layer and a control layer.
Data Layer. The data layer consists of sensors, actuators,
and the environment. (1) A sensor may be a sensing compo-
nent that measures a physical feature (e.g., the temperature),

a device that reports its states (e.g., the on/off state of

an outlet), or a system state (e.g., mode). (2) An actuator
can be either a controllable device or a system state. An

IoT device may be a sensor, an actuator or a combination.
(3) The environment has a set of physical features such as

time, temperature, illuminance, etc. The interaction among

sensors, actuators and the environment is shown in Fig. 1.

Sensors observe the environment, while actuators can affect

sensors via device/system state (e.g., turning on a switch

produces an on event) or via physical channels [16] (e.g., a
thermostat influences a temperature sensor via temperature).

Control Layer. The control layer consists of automation
rules defined by apps; an app usually defines one or more
rules. In emerging appified home systems, the rule model

follows a trigger-condition-action paradigm, as depicted in
Fig. 1. Trigger subscribes to an event (e.g., television is
turned on) that activates the execution of a rule. Condition
is a set of constraints on home-related data (sensor readings,

device/system states, time, etc.) that must be satisfied for

the rule to proceed. The difference between trigger and
condition is that a fired trigger activates the execution while

412

Table I: Comparison between HOMEGUARD and related work.

Publication # of CAI Systematic Symbolic Threat CAI Threat Detection Risk
Date1 Threat Types Categorization? Modeling? Precise Semantics

Extraction?
Leverage App
Configuration?

No Need For
Specification?

Ranking?

SIFT [21] Apr 2015 1 � � �2 � � �

Surbatovish et al. [20] Apr 2017 1 � � � � � �
IoTA [22] Oct 2017 3 � � � � � �
Soteria [17] May 2018 3 � � � � � �
IoTSan [18] Oct 2018 2 � � � � � �

IoTMon [16] Oct 2018 1 � � �3 � � �

IoTGuard [19] Feb 2019 3 � � � � � �
SafeChain [23] Oct 2019 1 � � � � � �

iRuler [24] Nov 2019 8 � � �4 � � �

HOMEGUARD Aug 2018 10 � � � � � �
1 The earliest time when the work was published, including arXiv preprints. 2 Needs users to define rules on interfaces provided by the researchers.
3 Does not extract rule conditions. 4 Natural language processing (NLP) based approaches are less precise than code analysis (Section 9 in [24]).

a condition does not; also, condition is optional and can be
empty. The action is typically one or more commands issued
to actuators or notifications to users.

Interaction. The data layer and the control layer interact
in both directions. On the one hand, rules obtain data from

sensors and the environment (e.g., time). On the other hand,

rules send commands to actuators which further affect the

sensors and the environment.

IV. CATEGORIZATION OF CAI THREATS

Given a pair of automation rules R1 and R2, we com-
prehensively examine how R1 may interfere with R2 and,
accordingly, have identified three basic categories: Trigger-
, Condition-, and Action-Interference Threats, which arise
when the trigger, condition, and action of R2 is interfered
with by the action of R1, respectively (see Basic Pattern in
Table II). R1 and R2 may or may not belong to the same
app, and our HOMEGUARD system can handle both cases,

so we do not distinguish the two cases for the simplicity

of presentation. Next, by looking at the specific interference

contexts and effects in each category (see Auxiliary Pattern
in Table II), we identify multiple types of CAI threats, as

summarized in Table II.

A. Action-Interference Threats

Two rules may operate on the same actuator, but

issue conflicting commands (i.e., converse commands

such as open/close or the same command such as

setOvenSetpoint with different arguments) due to dif-
ferent automation purposes. When both rules are triggered

by the same event and pass the condition check, conflicting

commands issued by the two rules impose an Race on the
same actuator (A.1 in Table II); thus, the final status of

the actuator turns out to be uncertain (may be a bad state),

varying with factors such as the arrival order of commands

and the device’s communication and processing sensitivity.

To validate, we ran two SmartApps on SmartThings which

turn on and off a light switch respectively when a door

sensor detects the door being opened. We observed a variety

of results: the switch is turned on only, turned off only,

turned on then off, and turned off then on.

Another Action-Interference type (A.2 in Table II) is more
subtle than A.1 since two rules are not triggered by the same
event and therefore not executed simultaneously, but perform

conflicting commands. The two rules work separately but

the latter rule overrides the command issued by the former

one immediately or after a while, which might or might not

cause a real threat. Fig. 2(a) shows an example of A.2.

B. Trigger-Interference Threats

A rule’s action may change the home context, producing

an event that triggers other rules; thus, new covert rules
are derived from a group of explicitly defined rules. Covert
Rules may or may not be desired by users.
Fig. 2(b) shows an example of T.1. A covert rule “when

a voice command is issued then disarm the cameras” is
formed. If the user perceives the safety implication and only

uses the voice command when she is at home, it is not a real

threat but a feature for her. However, if she is not clearly

aware of the covert rule and uses the voice command while

not home, a real safety threat arises.

Suppose rule R1 triggers rule R2 first; if R2’s action in turn
has impacts on R1’s action or trigger, three special cases of
Trigger-Interference, i.e., T.2, T.3, T.4 (in Table II), can be
derived. In T.2, R2’s action incurs a race with R1’s action on
the same actuator; as a result, the execution of R1 yields an
opposite effect. In T.3 and T.4, the execution of R2 triggers
R1 such that R1 and R2 trigger each other in a loop; the
difference between T.3 and T.4 is that R1 and R2 perform
conflicting actions in T.4 but not in T.3. Fig. 3(a) and 3(b)
shows an example of T.2 and T.4, respectively. These threats
may lead to user confusion (e.g., cannot turn on the heater),

device damages (e.g., due to frequent toggling), or even

security and safety threats (e.g., light flashing in Fig. 3(b)

causes seizures to photosensitive epilepsy sufferers [25]).

C. Condition-Interference Threats

A rule R1’s action may change the satisfaction of another
rule R2’s condition and thus affect the execution of R2, which
is referred to as Condition-Interference Threats. Unlike

Trigger-Interference, the action of R1 does not necessarily
trigger the execution of R2, as R2 has its own trigger.

413

Table II: Categorization of CAI threats. Let Ri = (Ti,Ci,Ai), i = 1,2 denote two arbitrary rules, where Ti, Ci, Ai are the trigger, condition and action,
respectively. = ¬ denotes “conflicts with”; ∼ denote negation; �→ denotes “triggers”; ⇒ and � denote “enables” and “disables”, respectively. Validation
indicates whether R1 and R2 actually interact when both the basic and auxiliary pattern hold, according to our validation in SmartThings: �: always
happen, �: never happen, and �∗: conditionally happen (depending on platform-specific features, see Section VII-C).

Category Basic Pattern Auxiliary Pattern1 ID Validation Description

Action-Interference
Threats

A1 = ¬A2
T1 = T2, C1 ∧C2 A.1 � R1 and R2 are executed simultaneously to perform conflict actions.
T1 = T2, ∼ (C1 ∧C2) – � R1 and R2 cannot be both executed although they are both triggered.
T1 �= T2, C1 ∧C2 A.2 � R1 and R2 may be executed within a short period to perform conflict actions.
T1 �= T2, ∼ (C1 ∧C2) – � R1 and R2 are unrelated and have no interaction.

Trigger-Interference
Threats

A1 �→ T2

C1 ∧C2, ∼ (A2 �→ T1), A1 �= ¬A2 T.1 � R1 triggers R2, which does not interfere with R1 in turn.
C1 ∧C2, ∼ (A2 �→ T1), A1 = ¬A2 T.2 � R1 triggers R2, which performs a conflict action and thus invalidate R1.
C1 ∧C2, A2 �→ T1, A1 �= ¬A2 T.3 � R1 and R2 trigger each other alternately.
C1 ∧C2, A2 �→ T1, A1 = ¬A2 T.4 � R1 and R2 trigger each other and perform conflict actions alternately.
∼ (C1 ∧C2) � R2 fails its condition checking and cannot be executed.

Condition-Interference
Threats

A1 ⇒C2 T1 = T2 C.1 �∗ R1 turns a constraint in R2’s condition to true, which increases the
probability of R2 being executed.T1 �= T2 C.2 �

A1 �C2
T1 = T2 C.3 �∗ R1 turns a constraint in R2’s condition to false, which decreases the

probability of R2 being executed.T1 �= T2 C.4 �
1 The auxiliary pattern of each CAI type does not conform to the basic pattern in other categories if not explicitly specified. We elide the negation constraints for conciseness.

(a) Action-Interference Threat (A.2) (b) Trigger-Interference Threat (T.1) (c) Condition-Interference Threat (C.4)

Figure 2: Examples of CAI threats. Rule 1 unlocks the front door when the user arrives home; Rule 2 turns off all lights and locks the front door at
11pm if no motion is detected; Rule 3 uses voice commands to turn on TV and record a TV show; Rule 4 turns off cameras while watching TV; Rule 5
sets the home to away mode when the user leaves; Rule 6 detects burglar break-in when the user is sleeping.

(a) T.2 (b) T.4

Figure 3: Examples of other Trigger-Interference Threats: T.2 and T.4

There are two types of Condition-Interference Threats:

Enabling-/Disabling-Condition Interference, based on

whether R1’s action changes R2’s condition from false
to true (Enabling) or from true to false (Disabling).
Fig. 2(c) shows an example of Disabling-Condition

Interference (C.4). Rule 5 sets “away” mode when a

member leaves, disabling Rule 6 to detect break-ins when
another member is sleeping.

Our validation of C.1 and C.3 shows that they happen
conditionally (marked as �∗ in Table II). In C.1 or C.3,
when R1 and R2 are triggered by the same event, whether
R1’s action actually interferes with the condition checking
of R2 (although the patterns match) depends on multiple
factors in the underlying platform design and runtime, e.g.,

processor scheduling, task scheduling, database I/O synchro-

nization, etc. See Section VII-C for more details.

V. THREAT MODEL AND PROBLEM SCOPE

Cross-App Interference occurs when multiple apps inter-

play, without relying on intra-app vulnerabilities. Hence,

CAI threats are stealthy and cannot be handled by ap-

proaches that analyze apps individually. CAI threats may

be caused for various reasons: (1) users misunderstand the

full functionalities of apps based on app descriptions (which

may be imprecise) [18]; (2) users lack domain knowledge

to perceive subtle app interactions; (3) a global view is

difficult to acquire when it comes to app installation by

multiple homeowners over a long time span; and (4) users

misconfigure apps, which consequently leads to interference.

This paper broadly uses threats to refer to all discov-
ered interactions between rules, among which some may
be security-critical threats, some may be annoying-but-
innocuous, and others may be desired by users. Distin-
guishing different cases is not a completely computable

problem but depends on user intention. This paper focuses

on detecting all CAI threats in specific deployment, ranking

their risks, and presenting the detailed results to users in

a user-friendly manner (see Figure 5) for them to dictate

whether or not to keep the new app and/or re-configure it.

This work presents a technique for extracting automation

rules from the source code of smart apps, which is readily

available. How to extract rules from compiled code or

obfuscated code [26] is out of scope of this work.

VI. HOMEGUARD DESIGN

In this section, we present HOMEGUARD. As shown in

Fig. 4, modeling the automation (rule extractor and config.
collector) in a smart home (Section VI-B) is the foundation
for precise CAI detection. With precise modeling, HOME-

GUARD detects CAI threats (threat detector) when an app is
being installed or re-configured (Section VI-C). Moreover,
HOMEGUARD ranks the risk of every detected CAI instance

414

Figure 4: Architecture of HOMEGUARD.

to assist handling (Section VI-D). HOMEGUARD provides a

frontend app for users to view detection results.

A. Home Automation Rule Representation

Listing 1 shows the structured rule representation format

we use. It encapsulates the detailed information about a

rule: (1) trigger contains subject (e.g., a certain device),
attribute, and constraint (that should be satisfied); (2)

condition comprises data constraints (i.e., data quantitative
relations) and predicate constraints (i.e., boolean expres-
sions in path conditions); (3) action issues command to

control subject (e.g., a device), paras. denotes parameters of
the command, and data constraint denotes all quantitative
constraints related to the parameters; besides, when denotes
the scheduled time and period indicates the repetition inter-
val for issuing the command; by default, when and period
are equal to 0, meaning that the command is issued with no

delay and only once, respectively. In Section VI-B, we will

use an example to show how a rule is extracted from the

code in Listing 1 and is represented in Table III.

Listing 1: The rule representation format

Trigger:
(:subject).(:attribute)
(:constraint)
Condition:
(:data constraints)
(:predicate constraints)
Action:
(:subject)->(:command)(:paras)(:delay)(:when)(:period)
(:data constraints)

B. Home Automation Modeling

Home automation modeling includes three aspects: rule
semantics extraction (Section VI-B1), configuration infor-
mation collection (Section VI-B2) and rule assembly based
on the two kinds of information (Section VI-B3). Given an

app, its execution varies with distinct configurations; for

example, users may bind different devices to the app or

specify different values for variables. Hence, configuration

information collection is vital. Note that Home Automa-

tion Modeling is platform-specific because different smart

homes may employ different IoT platforms which support

distinct programming languages and APIs. We perform code

analysis and code instrumentation to extract rule semantics

and collect configuration from apps, respectively. To prove

this concept, we concretely implement the techniques on

Samsung SmartThings platform. We use a SmartApp snippet

Listing 2: Code snippet of ComfortTemp. Irrelevant lines (e.g., metadata
definition, UI-related sections) are omitted.

1input "mSensor", "capability.motionSensor", title:
"Which motion sensor?"

2input "tSensor", "capability.temperatureMeasurement"
3input "threshold", "number", title: "Lower than?"
4input "fan", "capability.switch", title: "Which fan?"
5input "ac", "capability.switch", title: "Which A/C?"
6def installed() {subscribe(mSensor,"motion",actHandler)}
7def updated(){
8unsubscribe(); subscribe(mSensor,"motion",actHandler)}
9def actHandler(evt) {
10def t=tSensor.currentValue("temperature")
11if ((evt.value=="active")&&(t<threshold))
12adjustTemp() }
13def adjustTemp() {
14ac.on()
15if(fan.currentSwitch=="on") fan.off() }

(see Listing 2) that turns off fans and turn on A/C when

motion is detected and the room temperature is below 70◦F
as an example to help present our techniques.

1) Rule Semantics Extraction: Prior approaches [9], [27]
insert runtime logging logic to collect context information
when sensitive commands are issued. Such dynamic ap-

proaches do not work for our purpose as they only explore

the paths that have been executed, while our goal is to extract
all the rules before they are executed. Approaches [12], [13],
[16] search the Abstract Syntax Tree (AST) of SmartApps

to look for information of interest (e.g., the trigger event, the

attribute, and the action) without tracking the data flows, so
they cannot fully retrieve the constraint information due to

variable assignments, nested branches, API calls, etc., which

is critical for precise CAI threat detection.

In order to conquer the setback above and extract rules

from an app completely and precisely, we propose to sym-
bolically execute the app, exploring all of its execution paths.

Each path starts from an entry point and ends at a sensitive

command (i.e., sink): the command reveals the action of a
rule, while the path condition exposes the rule trigger and
condition. To this end, the following questions or technical
challenges are addressed.

Path search strategy. A well-known limitation about sym-
bolic execution is poor scalability due to path explosion.

However, IoT apps are much smaller than applications in

other platforms (e.g., desktop, mobile) and have limited

number of paths, so a simple depth-first path search strategy
works well without encountering path explosion.

Symbolic inputs. Data whose values are not dependent on
other data are handled as symbolic inputs. In SmartApps,
they include device references, device attribute values, de-

vice events, user input, constant values, and API return

values (see API modeling below). To achieve automated

symbolic input identification, we parse all input method
calls to collect device references (each device reference

points to a globally unique 128-bit identifier for a device

connected to SmartThings) and user inputs (variables whose

values are specified by users during app configuration),

and add a symbolic input label to each of them. Besides,

415

we define variables to denote device attribute values used

in the code and label them as symbolic inputs. Similarly,

variables which accept constant value are also labeled as

symbolic inputs. Consider the example in Listing 2, the

devices references (mSensor, tSensor, fan, ac), user
input (threshold), and return values of the API call at
Line 10 and 15 are identified as symbolic inputs.

Analysis entry points and sinks. In our implementation,
the analysis entry points include the lifecycle methods,

e.g., installed, updated. The analysis sinks include
capability-protected device commands and security sensitive

SmartThings APIs (such as setLocationMode()). We
consider 126 device control commands protected by 104

capabilities [28] and 21 SmartApp APIs.

Generating Control-Flow Graph (CFG). We adapt the
approach in [9] to generate a control-flow graph from

the AST of each app. Our goal is to model the trigger-
condition-action structure of a rule. A rule with a trig-

ger usually starts from an event subscription method

subscribe(dev,attr,hndl) (typically invoked in the
analysis entry point methods). A subscribe call defines
that when an event (device dev’s attribute attr changes)
occurs, the handler method hndl will be invoked. There-
fore, each subscribe represents a rule trigger. Then we
trace into the invoked handler hndl to identify sinks along
the execution path. The path branches at conditional state-

ments (e.g., if or switch) so we may reach different sinks,
which are extracted as rule actions; the boolean expressions

within the condition statements along the execution path

from an entry point to a sink are used to construct the rule

condition for that sink. The corresponding trigger, condition,

and action are assembled into a rule.

Constraints for the rule trigger and condition. The
subscribe method yields to a rule trigger by subscribing
to an event (e.g., Line 8 in Listing 2). If a conditional

statement follows along the execution path to compare the

event’s value (e.g., Line 11 in Listing 2), the comparison

is regarded as part of the trigger constraint; otherwise, the

trigger is only a state change and has no constraint.

We track all data and predicate constraints along every

execution path from the entry point to sinks and attach

them (excluding the trigger constraint) to rule conditions. We

establish data constraints from value assignment statements.

Specifically, we modify the compiler to handle the 38

expression types defined in Groovy’s documentation [29].

On the other hand, we also build predicate constraints from

conditional statements, i.e., each boolean expression in an

if statement or each case expression in a switch state-
ment is translated into a constraint. We handle the ternary

expressions by breaking each of them into two branches.

API modeling. A main challenge in this work is to deal with
the closed-source APIs provided by SmartThings. We first

model the 10 SmartApp APIs that can schedule the method

Table III: One of the extracted rules from the code in Listing 2.

Trigger Condition Action

subject: mSensor
attribute: motion
constraint:
mSensor.motion
==active

data constraints:
t = tSensor.temperature,
tSensor.temperature=#DevState
predicate constraints:
t < threshold,
fan.switch == on

subject: fan
command: off
paras: []
data constraints:[]
delay: null
when: null
period: null

executions based on their arguments and functionalities. For

instance, runIn(delay, method) delays the execution
of method by a specified time delay. We attach the delay
information to runIn and continue to trace into the sched-
uled method to identify sinks. The successive sinks are also

attached with the delay. The delay is eventually inserted into

the when field (see Listing 1) of the extracted rule.
To handle APIs involved in constraint construction, we

model objects, methods and object property accesses by re-

viewing the SmartThings developer documentation [30]. The

return values of these methods and object property accesses

that do not rely on other data are also labeled as symbolic
inputs. We model 173 API methods and 94 object property
accesses in total and rewrite a static modeling function for

each method or property access according to its arguments

and return value. We further model a portion of external

Java APIs that are used by SmartApps. Based on these

modeling functions, we are able to construct constraints from

expressions that contain API calls.

Compiler customization. To build the symbolic executor,
we implement a compilation customizer and add it to the

compiler configuration, which is supported by Groovy to

allow developers to modify the compilation process. We

choose to work at the semantic analysis phase where the

compiler creates a class node for each element (variable,

method, expression, statement), and we write a set of visit

methods that follow the generic Visitor pattern [31] to

specify how the compiler processes these class nodes.

2) Configuration Information Collection: Recall that we
identify symbolic inputs from input methods, which are
rendered as graphical interface elements by SmartThings

for users to configure apps. To detect CAI threats in a

specific home, we need to know configuration information,

i.e., symbolic input values. Configuration is not available

until apps are installed; thus, it cannot be obtained through
static code analysis. In other words, so far the extracted rule
semantics only contain variable names rather than concrete

values. For example, in Table III a reference “mSensor”
rather than the globally unique identifier of the granted

device is extracted and “threshold” is not concretized to
a value (e.g., 70◦F). Without such information, the extracted
rules are incomplete and CAI detection becomes imprecise.

Solution. There are no APIs available to query configuration
information from SmartThings. To address the problem, we

collect configuration information by instrumenting Smar-

tApps. Code instrumentation has been used in previous

416

Listing 3: Code snippet showing how the app in Listing 2 is instrumented.
Unaltered lines are omitted. Lines 3–7 and 11–19 are the inserted code.

1//...
2def updated() {
3// collecting information
4def appname = "ComfortTemp"
5def devices = [[devRefStr:"mSensor",

devRef:mSensor], [devRefStr:"tSensor",
devRef:tSensor], [devRefStr:"fan",
devRef:fan], [devRefStr:"ac", devRef:ac]]

6def values = [[varStr:"threshold", var:threshold]]
7collectConfigInfo(appname, devices, values)
8//...
9}
10//...
11def collectConfigInfo(appname, devices, values) {
12def params //Set the cloud messaging server, which

relays messages to HomeGuard frontend app
13def config=["appname":appname, "devices":[:],

"variables":[:]]
14devices.each { dev ->
15config["devices"][dev.devRefStr]=dev.devRef.getId()}
16values.each { val->
17config["variables"][val.varStr]=val.var }
18sendConfig(params, config) // Send the

configuration to the relay server by calling
API httpPoseJson

19}

researches [9], [12], [19], [27]. In our case, instrumentation

is only to gather configuration during app installation, so it

introduces negligible complexity and overhead. We automate

instrumentation with a Groovy script. Listing 3 shows the

instrumented version of the app in Listing 2.

The lifecycle method updated is invoked when the app
is installed or re-configured. The appname can be obtained
from metadata. In each item of the lists devices and

values, devRefStr and varStr are variable names

defined in input methods, and devRef and var denote
real values specified by users. The Groovy script reuses

the code for symbolic input identification (Section VI-B1)

to identify appname, devRefStr, and varStr. The
collectConfigInfo method (Line 11) assembles a

JSON object config that stores the app name, map-

pings between each device variable name devRefStr
and the unique 128-bit ID of the configured device

(devRef.getId()), and mappings between each variable
name and its specified value. sendConfig sends the

collected information from the cloud (where the SmartApp

runs) to the user’s smartphone via a relay server.

3) Rule Assembly: We combine the rule semantics with
configuration from the same app to complete rule extraction.

Upon receiving configuration, we parse key-value pairs in

config and construct a constraint for each pair; that is,
each key dev in config["devices"] or each key var
in config["variables"] generates a constraint in the
form of dev = config["devices"][dev] or var
= config["variables"][var], respectively. The de-
rived constraints are inserted to certain fields of all rule

semantics defined by the app; specifically, the constraints are

appended to the constraint field of rule trigger, and the data

constraints fields of condition and action, respectively. Thus,

all the device references and variables in the extracted rule

semantics are concretized (e.g., the device IDs of mSensor,
tSensor, fan and the variable values of threshold1
in Table III) , and the rules become complete.

C. CAI Threat Detection

Whenever a user installs a new app, HOMEGUARD detects

CAI threats between each rule from the new app and every

existing rule and between different rules in the new app to

see whether any pair meets patterns shown in Table II under

the current configuration. In general, the pattern evaluation

has two steps: candidate filtering and overlapping-condition
detection. Candidate filtering is performed first to avoid un-
necessary computation for overlapping-condition detection.

1) Detecting Action-Interference Threats: Action Inter-
ference is commutative, so the detection of rules R1 and R2 is
performed once. Candidate filtering verifies whether R1 and
R2 satisfy two constraints: A1=¬A2 and T1= T2. To evaluate
A1 =¬A2, we first examine if the actions of R1 and R2 issue
contradictory commands, or issue the same command with

conflicting parameters; either situation indicates A1 = ¬A2.
If A1 = ¬A2 holds, the evaluation proceeds; otherwise, R1
and R2 do not have Action Interference. Next, if R1 and R2
have the same trigger (T1 = T2), they are an A.1 candidate;
otherwise, they are an A.2 candidate.
To determine whether the candidate really causes an

Action-Interference threat, we need to know if they could

be executed under the same condition, i.e., overlapping-
condition detection (C1∧C2). The overlapping-condition de-
tection is transformed into a constraint satisfaction problem
by merging all constraints in the conditions of the two rules.

If the problem is solvable (C1∧C2 holds), the candidate is
confirmed to cause an A.1 or A.2 threat. Our implementation
chooses the Java Constraint Programming (JaCoP) library as

the solver, which is efficient and open-source.

2) Detecting Trigger-Interference Threats: Trigger-

Interference is not commutative so the detection of two

rules R1 and R2 should be performed in both directions.
Without loss of generality, we discuss one direction

here. There are two ways that R1’s action triggers R2
(A1 �→ T2): (a) R1’s action (e.g., turning on a switch)

causes a state change of an actuator such that this event

(off→on) triggers R2; (b) the actuator controlled by R1
(e.g., turning on a heater) changes an environment channel

(e.g., temperature) that changes a sensor (e.g., temperature

sensor) measurement subscribed by R2.1 First, we follow the
two ways above to determine if A1 �→ T2 holds. If A1 �→ T2
holds, we further evaluate if A2 �→ T1 and A1 = ¬A2 hold;
based on the result, R1 and R2 are considered as a candidate
of T.1, T.2, T.3 or T.4 depending on which auxiliary pattern
in Table II the pair satisfies. Next, the overlapping-condition

1Determining case (b) precisely requires detailed knowledge about the in-
situ interactions between actuators and sensors. The techniques for learning
the knowledge, e.g., data mining, are out of the scope of this paper.

417

Table IV: The effects of CAI threats on rule actions. See Table II for
CAI definitions and notations.

CAI Type A.1 A.2 T.1 T.2 T.3 T.4 C.1 C.2 C.3 C.4
Action A1 − − − + o

Action A2 − − + + + o + + − −

detection result in Action-Interference detection is reused

to finalize the detection: if C1 ∧C2 holds, a candidate is
confirmed to cause a Trigger-Interference threat.

3) Detecting Condition-Interference Threats: The detec-
tion of Condition-Interference is anticommutative and we

present one direction. To detect whether R1 has Condition-
Interference with R2, we first evaluate whether A1 ⇒ C2
or A1 � C2 holds. Similar to Trigger-Interference threats,
there are two ways that R1 can affect R2’s condition: (1)
R1 changes the state of an actuator, which changes the
satisfaction of R2’s condition directly (e.g., R1 turns on a
heater and R2 checks if the heater’s state is on); and (2) R1
affects an environment channel by controlling an actuator,

which changes the satisfaction of R2’s condition (e.g., R1
turns on the heater and the condition of R2 involves the room
temperature). We verify if R1’s action affects R2’s condition
in either way; if so, the detection proceeds.

Next, we distinguish whether R1 enables (A1 ⇒ C2) or
disables (A1�C2) R2’s condition. To this end, we create an
effect constraint to denote the effect of A1. For instance,
if A1 locks a door (door1), we generate a constraint
door1.lock=locked; if R1 sets the heating temperature
of a thermostat to a value T and R2 uses a temperature
sensor (tSensor) in its condition, the effect constraint is
tSensor.temp>=T. We then merge the effect constraint
with R2’s condition and solve the new constraint satisfaction
problem. If the problem is solvable, A1⇒C2 holds, and the
two rules are mapped to C.1 or C.2 depending on whether
T1 = T2 holds; otherwise, A1 �C2 holds, and the two rules
are mapped to C.3 or C.4 in the same way.

D. Risk Ranking

As discussed in Section V, the outcome of CAI threats

ranges from security threats to user-desired features. Notify-

ing users of every CAI instance equally increases user efforts

and might annoy users, making them tend to underestimate

or even ignore the notifications. We propose a user-friendly

risk ranking model to help users evaluate notifications.

Observation 1: In general, each CAI threat type (Table II)
has specific impacts on the involved rules, i.e., promoting,

suppressing or looping the rule actions. For example, in

A.1, rules R1 and R2 perform conflicting actions (A1 and
A2, respectively) on the same actuator, whose final state
thus unpredictably violates the intention of either R1 or R2;
in other word, A.1 suppresses the actions of R1 and R2
(we consider that both actions are suppressed due to the

unpredictability). Likewise, in T.1, R1’s action A1 triggers
the execution of R2 to take action A2; i.e., T.1 promotes A2.
In T.4, R1 and R2 trigger each other and perform conflict

actions alternately on the same actuator (e.g., turn on and off

a switch); in this way, T.4 loops A1 and A2. We use +, −, ◦
to denote promoting, suppressing and looping, respectively,

and summarize the effect of all CAI threat types on the

involved rule actions in Table IV.

Observation 2: The risk implication of promoting, sup-
pressing or looping a rule’s action depends on both the

functionality of the rule and the sensitivity of the action.

Consider a safety-critical rule R1 (“unlock the door and open
the window when smoke is detected”) and a non-safety rule
R2 (“open the window when air quality is low”). Given a
CAI threat that prevents opening the window, it imposes a
higher risk to R1’s action A1 than to R2’s action A2 since
users might install R1 for security or safety functionality
but install R2 for comfort or convenience. On the other
hand, while promoting opening the window or unlocking

the door has a low impact on the functionality of both R1
and R2, it is risky in common cases based on the safety
nature of windows and doors. Therefore, we take both rule
functions and device control sensitivity into consideration for
evaluating the risk of a CAI instance.

We formally define the risk of a CAI threat instance

I(type,R1,R2) as Risk(I), where R1 = (T1,C1,A1) and R2 =
(T2,C2,A2) are the two involved rules (see Table II for
notations). Risk(I) has three possible values {1, 0, -1}
(interpreted as {high, medium, low}). From Observation 1

and 2, we know that a CAI instance has distinct effects and

therefore imposes different risks on the involved rules. The

risk riski on each rule Ri is calculated as a function of CAI
effect ei on Ri (see Table IV), the functionality category ci
of rule Ri, the device devi and command cmdi of Ri’s action:

riski =max(M1(ei,ci),M2(ei,devi,cmdi))

where M1(ei,ci) computes a risk value by factoring the rule
function of Ri and M2(ei,devi,cmdi) computes another risk
value by factoring the device control sensitivity of Ri. In
SmartThings, each app is assigned a category field (e.g.,
Safety & Security, Convenience, Energy Management) in its
source code that specifies its functionality. In our risk model,

the functionality category ci of a rule Ri is “safety” if the
category of the app that defines Ri is “Safety & Security”;
otherwise ci is “non-safety”. Thus, M1(ei,ci) produces a risk
value by looking up the pre-defined mapping in Table V,

which shows how the M1 risk level is determined by the
effect of the threat on a rule and the rule category.

To model the general sensitivity of controlling a de-

vice devi with command cmdi, we analyze the 146 offi-
cial SmartApps given that the automation rules in these

apps provide information about how IoT devices are sup-

posed to be controlled for specific functionalities. For

example, automatically locking a door is typically con-

sidered a safe operation, since “safety” rules usually

lock (rather than unlock) a door to ensure safety. Thus,

(+)lock.lock() (promote locking a door lock) has a

418

Table V: The risk level of a CAI threat instance I on a rule Ri, given the
effect ei of I on Ri and the functionality category ci of Ri.

Category Effect(+) Effect(−) Effect(o)
safety rules low high high

non-safety rules low medium medium

low risk, (-)lock.lock() (suppress locking a door)

has a high risk and (o)lock.lock() (alternately lock

and unlock a door) has a high risk. Automatically turning

on a light is regarded as a low-risk operation since “non-

safety” rules usually turn on lights for convenience. Thus,

(+)light.on() has a low risk, (-)light.on() has
a medium risk and (o)light.on() has a medium
risk (annoying users). Note that SmartThings uses capabil-
ities to model different device types and commands. Based
on the above idea, we build a general risk knowledge model
KM for each capability-supported command under different

CAI effects (i.e., +, −, o), by analyzing all rules in the 146
SmartApps as shown in Algorithm 1; in total, we obtain the

KM of 46 capability-supported commands (Table VI). Next,

M2(ei,devi,cmdi) uses devi and cmdi to get a capability-
supported command capCmd and then use capCmd and ei
to retrieve a risk value from KM.

Algorithm 1: The algorithm for extracting device control sensi-
tivity under different CAI effects from SmartApps

Input : Apps← the source code of all SmartApps
Output: Risk knowledge model of capability-supported commands KM

1 foreach app ∈ Apps do
2 Rules ← ExtractRuleSemantics (app)
3 catetory ← ExtractCategory (app)
4 foreach rule ∈ Rules do
5 capability ← FindCapability(rule.action.device)
6 cmd ← rule.action.command
7 capCmd ← Concatenate(capability, cmd)
8 oppCapCmd ← FindOppositeCmd(capCmd)
9 if category is “Safety & Security” then

10 count[capCmd][’+’][’low’]++
count[capCmd][’-’][’high’]++
count[capCmd][’o’][’high’]++
count[oppCapCmd][’+’][’high’]++
count[oppCapCmd][’-’][’low’]++
count[oppCapCmd][’o’][’high’]++

11 else
12 count[capCmd][’+’][’low’]++

count[capCmd][’-’][’medium’]++
count[capCmd][’o’][’medium’]++

13 foreach capCmd ∈ count.keys() do
14 foreach e ∈ {’high’, ’medium’, ’low’} do
15 KM[capCmd][e]= max(count[capCmd][e][’high’],

count[capCmd][e][’medium’],
count[capCmd][e][’low’])

E. HomeGuard Frontend App

HOMEGUARD frontend bridges the detection system and

smart home users. A rule interpreter component translates
newly installed rules into a human-readable form and dis-

plays them via a user interface, such that users can check if
the rules match their intention. A threat interpreter displays
the detected CAI threats to users in a readable manner,

allowing them to decide whether to uninstall some app(s)

or whether to re-configure the involved app(s). Fig. 5 shows

screenshots of interfaces provided by the frontend app.

Table VI: The output KM of running Algorithm 1 on 146 SmartApps,
showing the risk level of a CAI threat instance I on capability-supported
commands under different effect ei. H: high, M: medium, L: low. Partial
results (out of 46) are listed due to space limits.

Capability.command Effect(+) Effect(−) Effect(o)
alarm.off H L H

alarm.siren L H H

light.off L M M

location.setLocationMode L M M

lock.lock L H H

lock.unlock H M H

switch.on L M M

valve.close L H H

valve.open H L H

(a) (b)

Figure 5: Screenshots that show the HOMEGUARD frontend app interface
when (a) installing AutoLock when GoodNight has been already
installed; (b) installing AutoMode when BurglarAlarm has been in-
stalled. AutoLock, GoodNight, AutoMode and BurglarAlarm are
SmartApps that define Rule 1, 2, 5, 6 in Fig. 2, respectively.

VII. EVALUATION

HOMEGUARD is evaluated on a Dell desktop (rule ex-

traction) with 3.4GHz Intel Core i7 CPU-6700 and 8GB

memory and a Samsung Galaxy S8 smartphone (CAI threat

detection and configuration collection) with Android OS

8.1.0. We study whether CAI threats can be identified by

HOMEGUARD from real market apps.

A. Test Cases

We create two test suites. The first set is used to explore

the status in quo of CAI threats in market apps and evaluate
the performance of HOMEGUARD in a large scale. The

second set is a subset of the first one and used to validate

the detected CAI threats in a real-world environment.

Market apps. We collect 146 out of 182 SmartApps from
the public repository [32], removing 36 web service Smar-

tApps which do not implement any rules but just expose

web endpoints for device or service integration [30]. We

use this set to (1) exhaustively identify CAI threats in

market apps and learn the distribution of risk levels among

the discovered instances, and (2) evaluate the performance

of HOMEGUARD at a large scale. In this experiment, it

is impossible to iterate over all configuration possibilities

without concrete user input; instead, we confine the detection

based on the following configuration situations that CAI

detection really cares about: (1) whether two apps work with

the same device(s) (if they request the same device type)

and (2) whether one app really affects another one through

physical channels (for example, turning on/off a light might

419

Figure 6: Devices and their layout in the real-world deployment.

or might not affect the measurement of an illuminance sen-

sor, based on their positions). Thus, we address the infinite

configuration issue by enumerating the binary answers (YES

or NO) to the two configuration questions above.

Real-world deployment for validation. To validate the
detected CAI threats by HOMEGUARD in real deployments,

we select 18 market apps that are found cause threats from

the second test case and configure them to work with 24

typical IoT devices (Fig. 6); these apps generate all CAI

threat types (see Table VII for the selected apps, app-device

bindings, and CAI threats to validate). We run these apps to

verify the detection results of HOMEGUARD.

B. Correctness of Rule Extraction

We first evaluate rule extractor’s ability to extract rule
semantics from the test suite. We manually review the code

and record the rules in the first test suite. To avoid human

errors, we also run these apps with simulated devices to

verify the correctness. Finally, we obtain 1107 rules in total.

The manual analysis results are used as ground truth.
We encountered several exceptions due to a lot of

unforseen code dynamics and variations. For example,

Feed My Pet uses device.petfeedershield in

the input method instead of a regular capability; Camera
Power Scheduler uses a public API runDaily which
was not documented by SmartThings. We fine-tune the rule

extractor by, e.g., adding the nonstandard device types into

the capability list and modeling the undocumented APIs we

encountered. Eventually, the rule extractor extracts all rules

from the market apps precisely and completely.

To test the rule extraction speed, we extract rules from

146 market apps and get an average execution time of

1341ms per app. Rule extraction can be performed only

once for market apps and the result can be shared via public

databases, so it is a one-time effort and can be done offline.

C. CAI Threat Detection

Detecting threats from market apps. We perform CAI

threat detection over the 146 market apps in the second

test set and record the results. We identify 663 CAI threat

instances in total and find that 101 out of 146 apps are

susceptible to at least one type of CAI threat. The statistics

of the detection results and vulnerable apps are shown in

Fig. 7. Fig. 7(a) shows that the total instance number and

the high/medium/low-risk instance number over each CAI

(a) (b)

Figure 7: Statistics of detection results on 146 SmartApps: (a) the number
and risk ranking distribution of detected instances for each CAI threat type;
(b) the number and risk ranking distribution of the SmartApps that are
vulnerable to each CAI threat type. See Table II for the threat acronyms.

type have different distributions. Among all CAI types, A.2
has the most instances while T.1 has the most high-risk

instances. From Fig. 7(b), we can see that fewer apps are in-

volved in high-risk instances than those in medium/low-risk

instances. Therefore, the risk ranking reduces user burden

significantly on making decisions if they are only concerned

about high-risk threats and also provides flexibility for

advanced users to eliminate problematic app interactions by

also looking at medium- and low-risk threats.

Validation of the CAI threats detected from market apps.
We validate CAI threats in real-world settings; specifically,

we bind 24 typical devices (Fig. 6) to 18 martket apps se-

lected from involved market apps (see Table VII for details).

By experiments, we confirm that all the listed threats, except

for Set 7, occur as indicated by our detection results. In C.1
(or C.3), two rules R1 and R2 are triggered simultaneously;
thus, whether R1’s action that leads to SmartThings updating
its database actually interferes with R2’s condition checking
cannot be determined by pattern-proving but depends on

how SmartThings handles the execution of simultaneously

triggered apps, which is a blackbox to us.

Our observation is that C.1 in Set 7 does not occur

but C.1 and C.3 in Set 9 always occur. In Forgiving
Security, the condition checking (if home is in “Away”
mode) is deferred by a scheduling API runIn(delay,
method), allowing Rise and Shine’s changing mode
to take effect before method (where condition check-

ing is performed) is called. We verify the influence of

runIn(delay, method) by (1) setting delay to 0 and
(2) deleting runIn and instead running method without
delay. C.1 and C.3 always occur in case (1) but never occur
in case (2) (same as Set 7). The result shows that C.1 and
C.3 always occur when the condition checking (which may
be interfered with) is scheduled by the platform runtime in

a waiting queue and otherwise never occur. Thus, theorem-

proving based CAI threat detection could get rid of some

false positives by taking this platform-specific feature into

consideration when detecting C.1 and C.2.
Detection speed. To evaluate the efficiency of CAI de-
tection, we test the averaged execution time for detecting

each CAI threat type between two rules on a Samsung

420

Table VII: The apps and app-device bindings for constructing CAI threats.

App Name Rule and Configuration Set # CAI Type
CurlingIron
Virtual Thermostat

When motion 1 detected, turn on oven 2 and fan 3 for 30 minutes.

When motion 1 detected, if temperature 4 is lower than 72◦F, turn off fan 3 .
1 A.1

NFCTagToggle
LockItWhenILeave

When the user touches on mobile app, toggle switch 5 and toggle door lock 6 .

When presence sensor 7 becomes “not present”, lock door 6 .
2 A.2

CurlingIron
SwitchChangesMode
MakeItSo

When motion 1 detected, turn on oven 2 and fan 3 .

When oven 2 is turned on, set home to “party” mode.

When changed to “Party” mode, unlock door 6 and turn on thermostat 8 .
3 T.1

It’sTooHot
EnergySaver

When temperature 9 exceeds 80◦F, turn on fan 10 .

When power usage 11 exceeds 3000 W, turn off fan 10 .
4 T.2

SmartHumidifier
HumidityAlert!

When humidity 12 is below 30%, turn on humidifier 13 ; when humidity 12 exceeds 50%, turn off humidifier 13 .

When humidity 12 exceeds 50%, turn on ventilator 14 ; when humidity 12 is below 30%, turn off ventilator 14 .
5 T.3

LightUptheNight When illuminance 16 exceeds 50 lx, turn off light 15 ; when illuminance 16 gets below 30 lx, turn on light 15 . 6 T.4
Brighten Dark Places
LetThereBeDark

When door 17 is opened, if illuminance 18 is below 10 lx, turn on light 19 .

When door 17 is opened, turn off lights 20 ; when door 17 is closed, restore the state of lights 20 .
7 C.1

Forgiving Security
Scheduled Mode Change

When motion sensor 1 or 21 becomes “active”, if the home is in “Away” mode, siren alarm 22 .

Set home to “Away” mode at 10 am and set home to “Night” mode at 6pm.
8 C.2, C.4

Forgiving Security
Rise and Shine

When motion sensor 21 becomes “active”, if home is in “Work” mode, turn on light 23 after 1 second.

When motion sensor 21 becomes “active”, set home to “At-Home” mode (“Work” mode).
9 C.3 (C.1)

GoodNight
Once a Day
MakeItSo

When motion 1 21 detected, if switches 2 3 5 10 13 14 15 19 20 23 24 are all off, set home to “sleep” mode.

Turn on fan 24 at 11 pm and turn off fan 24 at 12 am.

When changed to “sleep” mode, lock door 6 .
10 C.4

Figure 8: CAI detection overhead for a pair of rules. Green dotted lines
mean the constraint solving for detecting A.2, T.1,T.2,T.3,T.4 threats can
reuse the solving result of A.1 and the constraint solving for C.2, C.3, C.4
can reuse that of C.1. The threat acronyms are defined in Table II.

Galaxy S8 smartphone. As shown in Fig. 8, the most time-

consuming operation is constraint solving. The constraints

solving overhead in Condition-Interference Threats is lower

since the involved number of constraints is about half of

that in Action-Interference Threats. To avoid unnecessary

constraint solving, we first perform a light-weight candidate

filtering based on the pre-stored mapping lists and reuse the

constraint solving result across detecting different threats.

For an arbitrary pair of rules, the maximum total time for

detecting all CAI threats is 671 ms. The actual detection

time is usually much shorter since two rules rarely fit all

threat patterns and may fail partial or all candidate filtering

operations; thus, constraint solving overhead is avoided.

VIII. DISCUSSION

User effort. Users need extra operations to download instru-
mented apps before installation. A mitigation solution is to

automate this process by running a script. We have demon-

strated this solution by developing a Python script with

Selenium webdriver to automatically obtain the source

code from SmartThings Web IDE [33], run the instrumenta-

tion script (in Section VI-B2), and install instrumented apps

in the web IDE. Users only need to provide the SmartThings

IDE log-in account to the script.

Multi-Platform Applicability. The rule extractor and con-
figuration collector in HOMEGUARD are platform-specific

since platforms use different programming languages and

APIs. When source code [34] or bytecode [35] is available,

engineering effort for code analysis and instrumentation

could be made to support another platform. Besides apps,

some platforms (e.g., IFTTT) define rules on mobile or web

user interfaces (UIs). Rules can be extracted by crawling

free texts from UIs and parse the texts with natural language

processing (NLP) techniques [13], [24], [36].

IX. CONCLUSION

We comprehensively categorized CAI threats, and de-

signed and built a system HOMEGUARD to address the prob-

lem. HOMEGUARD applies symbolic execution to extract

rules from apps completely and precisely, and employs a

constraint solver to evaluate the relation between rules for

systematic threat detection, without needing users to specify

security goals. Moreover, we have proposed a practical

deployment path that utilizes code instrumentation to collect

the installation information and a frontend app to perform

the detection and risk ranking on the user’s smartphone. We

evaluated HOMEGUARD using real SmartApps from the app

store and validated the detection results in real-world envi-

ronments. The evaluation results show that HOMEGUARD is

effective, efficient, and precise.

ACKNOWLEDGMENT

This work was supported in part by the US National Sci-

ence Foundation (NSF) under grants CNS-1828363, CNS-

1564128, CNS-1824440 and CNS-1856380. The authors

would like to thank the anonymous reviewers and our

shepherd, Dr. Yennun Huang.

421

REFERENCES

[1] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app interference
threats in smart homes: Categorization, detection and han-
dling,” arXiv preprint arXiv:1808.02125, August 2018.

[2] “SmartThings,” https://www.smartthings.com/, 2018.

[3] “Apple HomeKit,” https://www.apple.com/ios/home/, 2019.

[4] “IFTTT,” https://ifttt.com, 2017.

[5] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in IEEE Symposium on
Security and Privacy (SP), 2016.

[6] R. Xu, Q. Zeng, L. Zhu, H. Chi, X. Du, and M. Guizani,
“Privacy leakage in smart homes and its mitigation: IFTTT
as a case study,” IEEE Access, vol. 7, pp. 63 457–63 471,
2019.

[7] H. Chi, Q. Zeng, X. Du, and L. Luo, “PFirewall: Semantics-
aware customizable data flow control for home automation
systems,” arXiv preprint arXiv:1910.07987, 2019.

[8] Q. Zeng, J. Su, C. Fu, G. Kayas, L. Luo, X. Du, C. C. Tan,
and J. Wu, “A multiversion programming inspired approach
to detecting audio adversarial examples,” in 49th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2019.

[9] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,
Z. M. Mao, and A. Prakash, “ContexIoT: Towards providing
contextual integrity to appified iot platforms,” in Proceedings
of the Network and Distributed System Security Symposium
(NDSS), 2017.

[10] S. Lee, J. Choi, J. Kim, B. Cho, S. Lee, H. Kim, and J. Kim,
“FACT: Functionality-centric access control system for iot
programming frameworks,” in Proceedings of the 22nd ACM
on Symposium on Access Control Models and Technologies
(SACMAT), 2017.

[11] A. Rahmati, E. Fernandes, K. Eykholt, and A. Prakash,
“Tyche: Risk-based permissions for smart home platforms,”
arXiv preprint arXiv:1801.04609, 2018.

[12] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and
P. Tague, “SmartAuth: User-centered authorization for the
internet of things,” in USENIX Security Symposium, 2017.

[13] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“HoMonit: Monitoring smart home apps from encrypted
traffic,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2018.

[14] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan,
P. McDaniel, and A. S. Uluagac, “Sensitive information
tracking in commodity iot,” in USENIX Security Symposium,
2018.

[15] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?:
Controlling flows in iot apps,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Se-
curity (CCS), 2018.

[16] W. Ding and H. Hu, “On the safety of iot device physical
interaction control,” in Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
2018.

[17] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot
safety and security analysis,” in Usenix Security Symposium,
2018.

[18] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J.
Colbert, and P. McDaniel, “IotSan: fortifying the safety of iot
systems,” in Proceedings of the 14th International Confer-
ence on emerging Networking EXperiments and Technologies
(CoNEXT), 2018.

[19] Z. B. Celik, G. Tan, and P. McDaniel, “IoTGuard: Dynamic
enforcement of security and safety policy in commodity
iot,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2019.

[20] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia,
“Some recipes can do more than spoil your appetite: An-
alyzing the security and privacy risks of ifttt recipes,” in
Proceedings of the 26th International Conference on World
Wide Web (WWW), 2017.

[21] C.-J. M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang,
Z. Pan, Z. Li, and Y. Yu, “SIFT: building an internet of safe
things,” in Proceedings of the 14th International Conference
on Information Processing in Sensor Networks (IPSN), 2015.

[22] J. L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, and
M. Sridharan, “IoTA: a calculus for internet of things automa-
tion,” in Proceedings of the ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, 2017.

[23] K.-H. Hsu, Y.-H. Chiang, and H.-C. Hsiao, “SafeChain:
Securing trigger-action programming from attack chains,”
IEEE Transactions on Information Forensics and Security,
2019.

[24] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A.
Gunter, “Charting the attack surface of trigger-action iot
platforms,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[25] E. Ronen and A. Shamir, “Extended functionality attacks on
iot devices: The case of smart lights,” in IEEE European
Symposium on Security and Privacy (EuroS&P), 2016.

[26] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient
decentralized android application repackaging detection using
logic bombs,” in Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2018.

[27] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear
and logging in the internet of things,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS),
2018.

[28] “SmartThings capabilities reference,” https://docs.
smartthings.com/en/latest/capabilities-reference.html, 2018.

422

[29] A. S. Foundation, “Java constraint programming solver,” http:
//groovy-lang.org/documentation.html, 2018.

[30] “SmartThings developer documentation,” http:
//docs.smartthings.com/en/latest/, 2018.

[31] J. Palsberg and C. B. Jay, “The essence of the visitor pattern,”
in IEEE Computer Software and Applications Conference
(COMPSAC), 1998.

[32] “SmartThings public github repository,” https://github.com/
SmartThingsCommunity/SmartThingsPublic, 2018.

[33] “SmartThings Groovy IDE,” https://graph.api.smartthings.
com/, 2018.

[34] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs.” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[35] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: sym-
bolic execution of java bytecode,” in IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2010.

[36] I. Hwang, M. Kim, and H. J. Ahn, “Data pipeline for
generation and recommendation of the iot rules based on
open text data,” in the 30th International Conference on Ad-
vanced Information Networking and Applications Workshops
(WAINA), 2016.

423

