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Abstract—Context-based IoT device paring is a popular so-
lution for devices that lack an interface. However, it takes a
proximate distance or a long time for IoT devices to sense highly
correlated context with enough entropy. In this work, we present
a novel approach for fast and secure multiple commercial off-the-
shelf (COTS) devices pairing in IoT scenarios. Our approach is
based on the key idea that devices co-located within a physically-
secure boundary can perceive qualified context under the help
of human-in-the-loop (HITL). Specifically, we leverage received-
signal-strength (RSS) trajectory data with manually-generated
interferences in a certain period as the shared secret to achieve
fast and secure device pairing. Moreover, the real-time RSS
trajectory data can be utilized to generate random numbers
in lieu of pre-shared key (PSK), which makes our scheme
more resistant to background attacks. We theoretically prove
the security of our pairing scheme and implement it in some
real-world environments. Our experimental results demonstrate
that our scheme can effectively defend against malicious devices
by imposing a threshold on the similarity of RSS trajectory
data. The experimental results also show that, compared with
the traditional context-based pairing that takes up to 24 hours,
the legitimate device in our scheme takes only 10 seconds to pass
the similarity check on average, which is efficient and feasible.

Index Terms—IoT pairing, multiple devices, manually inter-
ference

I. INTRODUCTION

IoT devices cannot be used for data sharing until they are
successfully paired with other counterparts or hubs. Traditional
approaches to a secure pairing protocol are usually based on
PSKs, which are normally provided by a device’s vendor.
However, the issue with these contemporary methodologies
is their vulnerability to a background attack [1]–[3]. With
sufficient background knowledge of a legitimate device, a
malicious third party would be able to deduce a target device’s
PSKs. Therefore, instead of sharing prior secrets, the solution
selected for better securing privacy in pairing is known as
Public Key Infrastructure (PKI), which is still difficult to
widely deploy, especially in an IoT scenario.
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The current industrial solution for pairing IoT devices is to
rely on user participation to manually bridge the secret of a
pairing-ready device to another (e.g., entering a secret code
from one device to another). Unfortunately, in IoT scenarios,
most devices are considered capacity-restrictive, meaning that
they might not always support this method due to the lack of
a necessary user interface (e.g., keyboard or screen).

In contrast, a context-based pairing approach that relies
on the context sensed by devices themselves has been pro-
posed. In this method, devices could use their surrounding
environment (e.g., location, ambient sound, luminance, and
even humidity) to generate a shared secret instead of PSKs,
to overcome the problem of interface shortage. With certain
threshold or fuzzy policies, the information extracted from
proximate surrounding context must be similar. However, we
cannot always expect that all the devices will share a common
sensing modality, it is hard for some COTS to be paired
by simply cooperating the context-based paring method. In
addition, in modern scenarios devices are usually deployed in a
fixed place before they are connected. Sometimes, there is not
a close enough distance to extract highly relevant information
from the context [4]. Moreover, contextual information such
as ambient sounds differs slowly over time, requiring a longer
time for devices to extract information with enough entropy
to prevent the pairing protocol from brute-force attacks. Last
but not least, the context-based pairing method cannot support
multiple devices placed in different locations at the same time,
because the context will vary greatly with distance. Effectively,
this would mean that in order to pair with multiple COTS IoT
devices, the pairing protocol would need to be executed many
times, which is considered low efficiency.

A. Motivation and Challenges

We want to find a secure and practical way for context-based
multi-COTS IoT device pairing. Not only should our pairing
scheme be robust against malicious third parties, but it should
also be easy to implement, time-friendly, and simple enough
for a non-expert user to pair all of his devices together.

The challenges are: (1) the context cannot always be sensed
by every device, how to make all devices have the ability to
obtain context; (2) the sensed context between multiple devices
may vary greatly, how to make all the sensed context have a
high degree of similarity.

To tackle these challenges, we design our new approach
for fast and secure multi COTS IoT devices pairing in
IoT scenarios by only using received-signal-strength (RSS)
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trajectory data with manually-generated interferences during
a certain period. The reason why we chose RSS trajectory
with manually-generated interferences to be the context can be
concluded as follows. The first reason is that we could convert
commonly-sensed RSS data with manually-generated interfer-
ences into a random seed, which take the place of PSKs,
minimizing the possibility of a background attack. Second,
IoT devices usually can have the ability to communicate with
a hub and record RSS data with a simple software update,
meaning our scheme could be easily deployed in COTS IoT
devices without any hardware adaptions. Third, as evaluated
in Section VI-A, the event of manually-generated interferences
could be strongly sensed by nearby COTS IoT devices with
high similarity. The context is then considered as shared
randomness and would allow for multiple devices to be paired
within one pairing circle, which is considered as a critical
advantage of our scheme. Our experiment results further show
that such interferences cannot be precisely captured by an
attacker outside a wall or far away. Therefore, by adding
some manually-generated interferences around the router, all
IoT devices can be paired efficiently and securely within one
pairing attempt.

B. Contributions

We make the following contributions:
• We design a fast and secure device pairing method by

using only a certain period of RSS trajectory data with
manual interferences. It is thus no need for additional
interfaces or hardware adaption for the pairing procedure.

• With proof-of-concept implementation and extensive ex-
periments, we demonstrate that our pairing method is both
fast and secure.

• Our pairing method supports two or more devices dur-
ing one pairing process. Compared to other traditional
schemes, it owns a critical advantage.

C. Organization

The remainder of this paper is organized as follows. We
discuss the background and relevant related work in Section II.
In Section III, the architecture of our scheme and our threat
model are introduced. Then, we present the problem state-
ment and describe our schemes in detail in Section IV. In
Section V, we analyze the security of the proposed scheme.
The implementation details and the experimental evaluation
are presented in Section VI. Finally, we conclude this work in
Section VII.

II. BACKGROUND AND RELATED WORK

We will review the literature of IoT pairing and RSS
recognition in this section.
IoT Pairing. For IoT device pairing, there are plenty of
methods that do not rely on any prior knowledges (e.g., secret
code, context or biological characteristics). Usually, these
methods require certain special involvement from active users
to achieve key agreement. For example, a user could simply
compare two authentication strings showed on devices or just

use a keyboard to input one device’s authentication message
to another. However, due to a lack of screen/keyboard on IoT
devices, these methods are not always applicable. Therefore,
researchers try to use either visual or auditory channel to
transfer devices’ authentication strings [5], [6]. These are all
good attempts but still not a universal solution for all devices.

There is another way of device authentication based on
automatic pairing. Instead of secrets generated by HITL,
devices rely on the information derived from the particular
surrounding environment as the shared secret to execute the
pairing protocol. As long as the information stays highly
correlated, the success of pairing can be expected. However,
recording the surrounding information still demands some
common and properly-calibrated sensing capabilities across all
devices [7]. Additionally, even with the required capability, the
time and storage space consumption for processing the sensed
surrounding information is still heavy for IoT devices [8]–[11].

Lately, the focus on devices pairing turns into asking an
active user to perform some special movements for devices
to accumulate a highly-matched message, which could be
sensed by the pairing devices simultaneously; the special
movements include but are not limited to shaking devices
together [12], swiping one through another [13], [14], or
tapping in a particular pattern [15], [16]. Ignoring the special
requirement of sensors, these solutions raise some problems
if, say, devices have fixed positions, i.e., for matched message
accumulation, they are too far from one another or cannot be
moved as necessary. To address this limitation, some papers
suggest using another handy device (a bridge, for instance) to
help target devices [17]–[19].

In addition, due to attacks such as man-in-the-middle
(MITM) [20], [21] or protocol manipulation [2], message
sensed by devices should have the characteristics of enough
entropy to protect the pairing protocol from brute-force at-
tack [22]. One could use biological features such as touch [23]
or heartbeat [24] patterns as the commonly sensed message.
The trajectory extracted from RSS [4], Channel State In-
formation (CSI) [25], [26], the gyroscope trend [12] or the
related position of device [27] is also effective. Since most
IoT devices have the ability to communicate with others via
wireless networks (e.g., WiFi, ZigBee, ZWave), RSS is a good
choice for device pairing.

RSS-based Recognition. RSS is also referred to as a received-
signal-strength-indicator (RSSI), a measurement of the power
present in a received radio signal. Nodes used by an Accuware
WiFi Location Monitor and Bluetooth Beacon Tracker are ca-
pable of measuring the RSS of nearby WiFi and BLE devices.
RSS is usually affected by three factors: path attenuation,
shielding, and multi-path effect. RSS values are measured in
dBm and typically have negative values, ranging between -
110 dBm (extremely poor signal) to 0 dBm (excellent signal).

Various works based on RSS have been proposed in the past
few years. At first, the recognition scenario is simple where
a pair of devices (transmitter/receiver) is settled. Scholars
could use the fluctuation of RSS trajectory from these devices
to detect running [28], and even which direction a man
is walking [29]. Then, more pairs of devices are planted
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Figure 1: The system model of our proposed multi-device
pairing scheme

in different directions to get more detailed reference data.
The more data we collect, the higher the RSS recognition
accuracy will be [30]–[32]. However, RSS itself is a simple
measurement and suffers from a precision bottleneck. In
present research areas, CSI has slowly taken the place of
RSS, since it could provide better fine-grained data for
recognition tasks [33]. Nevertheless, RSS can still be used
for some applications, such as gesture recognition [34] and
breath detection [35]. In comparison to CSI, using RSS
does not need special hardware support and takes less time
on collecting/calculating. Therefore, it is considered more
practical. Furthermore, there are plenty of methods we could
apply for our recognition task, such as traditional machine
learning methods [36], deep learning methods [?], an ensemble
of classifiers [37], and hybrid analysis of features [38].

III. ARCHITECTURE AND THREAT MODEL

A. System Model

The system model comprises two types of entities: an
Access Point (AP) and a number of IoT Devices.

AP connects to a local area network and provides wireless
interfaces for other devices to join the network. For example,
in a typical smart home scenario, an AP could be an IoT hub,
mobile phone, a smart router, a laptop, etc.

Devices are equipment with the ability and desire to join
an IoT network with a legitimate identity. Each device may
have different types of functional components such as sensors,
actuators, interfaces, etc. We assume that devices do not share
any secrets before pairing. However, there could be some
devices that have already joined the network.

B. Threat Model and Security Requirements

In this paper, we consider the goal of an adversary, Adv, is
to gain access to users’ data. Thus, Adv would make efforts to
prevent a new device from pairing with an AP and trick it into
joining an illegitimate network instead, to obtain privileged
access to the device. An Adv would additionally disguise
himself as a new legitimate device to join an AP’s network

and get more sensitive data. The Adv could achieve this by
launching (1) a deducing attack, or (2) an impersonating
attack.

One definition of a deducing attack is when an Adv uses his
recorded RSS trajectory with manually-generated interferences
(outside) to deduce RSS trajectory data with high precision.
Then, the Adv could use this data to pass similarity checking
and join an AP’s network illegally. Here, Adv may be able to
use an enhanced receiver and computing power to generate his
RSS trajectory data.

A second definition of a deducing attack is where an Adv is
familiar with a user’s manually-generated interferences pattern
and could mimic these interferences around his own device to
generate highly-related RSS trajectory data. An Adv could use
this data to pass similarity checking and join an AP’s network
illegally.

Also, we define an impersonating attack as one where an
Adv launches an MITM attack between an AP and a legitimate
device, in order to get their identities and disguise himself as
one of them. An Adv would be able to access the sensitive
data after the success of the MITM attack.

We assume that physical boundaries (e.g., walls) draw a
natural trust boundary between legitimate devices and an
Adv’s device present outside a wall. Adv is considered to
have the ability to eavesdrop, intercept, replay, and modify
communications among devices and APs, but he cannot
compromise the devices inside. This paper aims to meet the
following security requirements:
Data privacy. The private data (e.g, active time of users and
energy consumption) collected by legitimate devices needs
to be protected. Legitimate devices should not pair with
malicious devices controlled by Adv. Recalling the definition
we gave for a secure pairing protocol, it usually goes with a
two-party mutual authentication and an efficient key agreement
process. Therefore, two more security requirements emerge.
Identity security. Legitimate devices should never accept
pairing with a malicious device or reject pairing with the
desired one.
Key security. Data privacy or confidentiality depends on
the security of the keys used in transmission. Therefore, the
materials for generating keys must have enough entropy.

IV. FAST AND SECURE MULTI-DEVICE PAIRING SCHEME

Before the presentation of our ideas, we investigated and
summarized the pairing method for resource-constrained de-
vices, such as wireless headsets, smart speakers, smart door
locks and smart sensors.

A. An Industrial Scheme for Resource-Constrained Device
Pairing

As shown in Figure 2, the following steps are taken for the
device to join U’s home IoT.

• Setup. The device waiting for pairing creates an Ad-Hoc
network N for secret sharing.

• Join. U uses his ‘Helper’ device (usually a mobile phone)
to join the network N .
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Figure 2: General Scheme for Resource-Constrained Device
Pairing

• Secret Sharing. U transmits his secret (e.g., the SSID and
password of the home IoT network) to the new device.

• Pairing. The device uses the received secret to complete
a pairing protocol for joining the home IoT network.

Generally speaking, the industrial realization of Join is
through the following methods: (1) ‘Helper’ scans a QR
code provided by the pairing-ready device; (2) ‘Helper’ uses
a password marked on the pairing-ready device (3) The
pairing-ready device sets N as a public network thus
‘Helper’ can freely connect to the network. However, preset
QR code or password is vulnerable to the background
knowledge attack. And all the methods lack mutual
authentication, which can be exploited by adversaries to
launch a MITM attack.

B. A Typical Context-based Device Pairing Scheme

A context-based device pairing scheme can be used to cope
with the MITM attack. Its procedures are summarized below:
• Setup. The pairing devices establish a secure channel,

providing confidentiality, integrity, and freshness except
authentication.

• Authentication. In the authentication phase, the two devices
commit to their respective context readings, α and β. Then,
devices utilize the secure channel to exchange their commits,
before decommitment. After receiving the commit from the
other, devices open their commits and compare the context
reading. If the context readings, α and β, reach a certain
similarity, the device authenticate each other.

According to our experiment showed in Section VI, different
locations lead to different contexts. It is still an open problem
to make different devices installed in different locations share
a similar context.

C. Details of Fast and Secure Multi-device Pairing Scheme

Now, we present our fast and secure multi-device pairing
scheme. As shown in Figure 3, suppose we got n devices in
our scenario, just starting to join AP’s network, denoted as
D1, D2, · · · , Dn. An AP connected to a home IoT network is
settled in our scenario. We also assume that there is a helper
device, denoted as ‘Helper’ or ’DH ’ for the rest of this paper,
which has joined the AP’s network already in a secure way.

AP 

(Home IoT 

Network)
2. Recording TAP

1. Broadcasting ti

Di

Helper Device

3. Processing Mi

10. Join

2. Recording TAP

3. Processing MH

4. Commitment SH

Figure 3: Our Fast and Secure Multi-device Pairing Scheme

Initially, we treat all the devices as legitimate devices, each
of which has an identity. The pairing protocol runs as follows.

* Information Sharing. The pairing devices dive into pairing
mode and gather information from AP to extract secrets.
– 1. Broadcasting (ti). After getting a ‘start’ instruction

from the user, an AP will continuously broadcast its cur-
rent system time, ti. During the broadcasting period, some
manually-generated interferences are applied around AP’s
transmitting component. The message sent by AP is
denoted as c = (t1, t2, · · · , tm), where ti denotes the
time that the ith packet is sent. Since devices do not share
any secret in advance, the broadcasting message is sent
in plaintext.

– 2. Recording (TAP ). While AP is broadcasting its mes-
sage, device Di will simultaneously monitors all packets
around itself as it is on pairing mode (unpaired devices
can change their pairing state by receiving wireless
broadcast commands). During this process, the RSS of
each packet will be recorded. The dataset Mi written by
device Di is defined as Mi = {RSS, TAP , Source} =
{(rit1 , t1, source), · · · , (ritj , tj , source)}, where ritj , tj ,
and source denote the received signal strength at time tj ,
the sending time of received message, and the sending
source of received message, respectively. Also, Helper
will be woken up by AP to record its own dataset, MH .

* Secret Extracting. After gathering enough information,
devices will extract the demanding secrets from the context
information for secure pairing.
– 3. Processing (Mi). In this step, a less sensitive but

effective message Si is generated by calling the function
get_special(Mi), i ∈ [1, 2, · · · , n,H]. The function
details can be seen in Algorithm 1.

* Authentication. Then pairing devices try to get authenti-
cated by AP.
– 4. Helper Commitment (SH ). In order to let legitimate

devices join AP’s network N , the password, pwd, of N
should be sent to those devices identified as legitimate,
by Helper. First, DH will randomly generate its commit
key kH and a pair of its session key (pkH , skH ).
Then, the commitment CH will be made by DH , where
CH=(SH)kH

and kH is the commit key. Then {CH , tend}
will be broadcast to devices, where tend is the ending time
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of accepting other devices’ commitments.
– 5. Devices Commitment (Si). After hearing from DH ,

each device will broadcast its own commitment Ci=(Si)ki

before tend, where ki and Si are obtained by Di in a
manner similar to DH .

– 6. Devices Reveal (ki). After tend, device should reveal
its commitment by broadcasting its ki.

– 7. Preliminary Screening (Ci, ki). Helper opens every
commitment and checks the special point from each
device. If the correlation coefficient
NewCoeffCheck(SH ,Si) reaches a certain threshold,
DH asks device for its complete RSS trajectory data by
sending its kH and his public session key pkH . The
function NewCoeffCheck details can be seen in
Section IV-E.

– 8. Matching (CH , kH , pkH ). Di will check the legitimacy
of ‘Helper’ by comparing the similarity between SH and
Si, where SH is extracted through Open (CH , kH). Then
the whole RSS data of Di will be encrypted by pkH and
sent to Helper.

– 9. Sending . Helper will then send devices who finally
passed the whole data similarity checking,
coeff (MH ,Mi), with AP’s network parameters
(includes ssid, pwd, MAC, etc.).

* Connection. Devices connected to AP and get ready for
users.
– 10. Join. Hearing from DH , device Di will join network

N with password pwd. Then, device Di and AP step into
the key agreement procedure to get their paired key keyi.

Due to the fluctuation of signal emission power and the
noise among signal transmission tunnel, the RSS variation
tendencies recorded in a stable environment from two devices,
which are not close to each other, usually do not reach a
high similarity. Therefore, we add some manually-generated
interferences around AP to enlarge the fluctuation, for a better
RSS similarity. Obviously, the variation tendency while AP is
broadcasting is considered as the shared secrets. Hence, the
choice of how to apply manually-generated interferences is
significant: the better method we used, the more likely that
devices are getting RSS datasets with high similarity.

Algorithm 1 Get Special Points

Input:
Collecting dataset, Mi = {Ri, T, source}.

Output:
Special points, Si.

1: Mi=removeoutlier(Mi);
2: Midwt=dwt(Mi), decompose RSS numbers using dwt;
3: Mi=waverec(remove noise(Midwt)), get the new RSS

while remove all the signals not in the scope of 5hz-40hz;
4: Si={t1, t2, · · · , t2l−1, t2l}=find anomaly(Mi,∆T ), get

the rough result of some pairs of special time points;
5: Si=check(Si), check all the detected points and discard

some pairs (for too short, too long or mis-classified
before);

6: return Si.

D. Different Types of Manually-generated Interferences

We now present the RSS result of different manually-
generated interferences. Generally speaking, using different
kinds of manually-generated interferences would lead to dif-
ferent pairing rates. Intuitively, we choose ‘open/close door’
in the line of sight between AP and devices, as the method
of our human intervention. It turns out that we could draw
a proximate line to tell which state those devices are in, as
shown in Figure 4(a), the red line is the RSS result recorded
by ‘Helper’ and the blue line is recorded by pairing device.
However, it takes about 5s to perform a door operation (open
and close), while our scheme demands more than 3 times (15s
more) of door operations to achieve a better pairing accuracy.
Still, we cannot always expect a door to be available in the line
of sight between AP and devices. So, we start to find another
way to manually generate interferences, instead of performing
door operations.

Inspired by the poor signal caused by metal material, we try
to use a Tin foil to cover/release AP’s transmitting component
(see Figure 4(b) for more details). We use a 20cm long and
10cm wide Tin foil and fold it in half to the shape of 10cm
long and 10cm wide. Then, we move the tin foil in a direction
perpendicular to the line between AP’s transmitting component
and the device. As expected, we could draw a line to tell the
state of the environment around AP. Even better, the total time
used for a successful and accurate pairing could decrease to
10s.

Although, nowadays, we could easily find Tin foil in
ordinary homes, we try to find another handy method which
could be faster and does not need extra materials. Later, we
found waving hands, which could be done in a shorter time, as
a good substitution (see Figure 4(c)). Although the similarity
of RSS results generated by waving hands is not as high as
using Tin Foil, with careful design and processing, we can still
obtain a pleasant similarity.

E. Calculate the Correlation Between Collected RSS Dataset

Another question is that how could we efficiently determine
the relationship between two RSS datasets. In statistics, the
Pearson correlation coefficient is a measure of the linear cor-
relation between two variables X and Y, especially when they
are temporal sequences. The coefficient ranges between −1
and 1, where 1 indicates a totally positive linear correlation,
0 indicates no linear correlation, and −1 indicates a totally
negative linear correlation. Given a pair of random variables
(X,Y), the Pearson correlation coefficient can be calculated as:

Definition 1. Pearson Correlation

ρX,Y =
cov(X,Y )

σXσY
(1)

where cov is the covariance, σX is the standard deviation of
X, and σY is the standard deviation of Y.

A key mathematical property of the Pearson correlation
coefficient is that it is invariant under separate changes in
location and scale, which makes it the basic selection to deal
with different RSS trajectory sampled at various locations.
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Figure 4: Comparison of Different Interventions

However, the asynchronous fluctuation on RSS may still get a
high correlation result. To overcome this problem and measure
how well the fluctuations are matched between two sampled
RSS datasets from different devices, we introduce the concept
of another coefficient named editing distance of multiple
pairs of points.

For simplicity, we give an example on how to get the
coefficient of editing distance between two extracted time
sequences, in Figure 5. Obviously, it takes a distance of 3 for
the first pair of nodes in S1 (1, 5) changes to nodes (2, 3) in
S2. Then, it takes a distance of 2 for nodes (22, 25) becomes
nodes (21, 26). Since we cannot find another pattern in S2
similar to (7, 13) in S1. In order to eliminate the differences
caused by this (7, 13), we calculate the distance of deleting
(7, 13), which could be counted as 13 − 7 = 6. So the
final editing distance between S1 and S2 is 3+6+2=11. About

11
5−1+13−7+25−22 = 11

13 ≈ 85% of the total fluctuation time is
not perfectly matched; besides, only 2

3 ≈ 67% of the total
fluctuations are sensed at both devices. Then we calculate
the correlation coefficient of these two time sequences as
(1 − 11

13 ) ·
2
3 ≈ 0.10 < 0.8, therefore, we consider their

similarity is low.
While we give our new method for correlation coefficient

calculation, getting the original RSS dataset and its corre-
sponding special points, which are used in similarity checking,
remains an unsolved question.

As shown in Algorithm 1, we use Discrete Wavelet Trans-
formation (DWT) to eliminate those noises that are not caused
by the user’s special movement (the moving frequency of
human is considered among 5-40hz [40]). Then, we use a
time window ∆T to detect the possible special pair of points
(a pair of points denote the period that user performed the
required movement) among dataset Mi.

For each target record, we calculate the average value of

1    5    7    13    22    25                    S1

1+2+(13-7)+1+1=11

Hit rate 2/3

Editing distance

2     3                   21    26                    S2

D|2->1|=1 D|3->5|=2

Figure 5: An example for how to count editing distance

its neighbors (records collected among the time window). If
the value of the target record is beyond the average value,
we consider it as an anomaly. According to Figure 6, for best
accuracy, we set the window size to 1 second.

After the process of RSS dataset Mi, we could get Si

for correlation coefficient calculation. Algorithm 2 shows the
procedures on counting coefficient in detail.

F. The key-agreement protocol with AP’s ‘imperfection’

Usually, a key agreement protocol requires the involvement
of a secure pseudo-random number generator (PRNG) for
key generation and nonce selection. Using PSKS of devices
as the random seed for PRNG to generate random numbers
will increase the possibility of a background attack. Securely
generating required random numbers becomes a problem.

Recall that we let AP continuously broadcast its current
system time ti to build up the final sensing dataset, TAP =
(t1, t2, · · · , tm). Next, from dataset TAP , we are able to
get the sending time of each packet in detail. If we set the
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Figure 6: Different window size and its accuracy for anomaly
detection

Algorithm 2 NewCoeffCheck

Input:
Special points correspond to user’s activities, Si, Sj .

Output:
Correlation coefficient C

1: Ni = zeros(Si(end), 1);
2: for each s2k−1, s2k ∈ Si do
3: Ni(s2k−1 : s2k) = 1;
4: end for
5: Nj = zeros(Sj(end), 1);
6: for each s2k−1, s2k ∈ Sj do
7: Nj(S2k−1 : S2k) = 1;
8: end for
9: cp = Pearson(Ni, Nj);

10: cd =
Editing Distance(Si,Sj)
Total Distance(Si,Sj)

;
11: C = cp ∗ (1− cd);
12: return C.

broadcasting frequency to kHz (usually 1 kHz), due to the
imperfection of each device, the total sending time of every
k packets will differ within the millisecond range. Therefore,
devices could use this difference as a random seed to generate
their session keys. For example, every time a device gets k
packets (sending in one second), it checks whether the RSS is
in fluctuation. If so, the reading of milliseconds of the current
time will be tailed to the old random seed to get a new random
seed, r̂seed = rseed||tk.

Here, we analyze the randomness of our random seed by
the randomness of time readings. Every time we update our
random seed, we record the time reading in milliseconds range
(23 bits). Then, we apply the NIST suite of statistical tests on
our recording dataset (8 bits, 106 updates). As we can see
in Table I, all these p-values are greater than 0.01, which
indicates the high probability that our dataset is randomly
generated.

V. SECURITY ANALYSIS

In this section, we will discuss why our scheme is secure
enough for device pairing. Before the analysis, we tested 12
IoT device locations inside and outside of an office/apartment.
RSS/SNR Coefficient in Different Locations. First of all,

Table I: p-value of several NIST statistical tests for our random
seed

NIST test p-value

Frequency 0.739918

BlockFrequency(m=128) 0.506438

CumulativeSums(forward/reverse) 0.372123/0.698499

Runs 0.500798

LongestRun 0.180609

Rank 0.155209

FFT 0.122325

Non Overlapping(m=9,B=00000001) 0.647302

Overlapping(m=9) 0.110434

Universal 0.302109

Approximate Entropy(m=10) 0.172934

Random Excursions(x=±1) 0.164011

Random Excursions Variant(x=-1) 0.445935

Serial(m=16) 0.107192

Linear Complexity(M=500) 0.449602

Table II: RSS and SNR in different locations

Location Distance from AP RSS (dBm) SNR (db) noise level (dBm)

Office

1 -29 24.78 -53

2 -32 23.60 -55

3 -33 24.05 -57

4 -37 23.74 -60

5 (outdoor) -60 11.95 -72

6 (outdoor) -65 10.03 -75

Apartment

1 -26 25.12 -51

2 -29 24.47 -53

3 -31 24.02 -55

4 -35 22.18 -57

5 (outdoor) -62 10.78 -73

6 (outdoor) -67 10.01 -77

we realize that an adversary Adv cannot get as high signal
strengths as legitimate devices do, due to signal fading.
Different propagation media cause different distortion and
attenuation of signals. Also, compared to air, the walls are not
conducive for signal transmission and therefore are bound to
induce a non-negligible signal strength attenuation. In Table II,
the experiments results are presented.

As we can see in Table II, the SNR decays rapidly when the
receiver is placed outdoors. This decay is caused by distance
attenuation and the signal reflection, meaning that even if an
Adv were to use an enhanced receiver to collect more accurate
RSS trajectory data with manually-generated interferences, the
walls would still prevent AP from exposing itself to Adv.

Moving on, we now analyze the security of our scheme
by considering how the scheme resists against the following
attacks.
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Figure 7: Similarity checking among different users with
similar references generate pattern

1) Deducing attack. We first define a security game
between a challenger C and an adversary A:
(State-IND).

Setup: A gets the number of SNR (not exceed 12).

Phase 1: A records some real-world dataset of RSS R =
{r1, · · · , rt} and sends it to C. C responds with the real state
(stable, fluctuate) of each ri.

Challenge: A chooses a pair of RSS records (r0,r1), where
r0 is recorded under a stable environment and r1 is recorded
with manually-generated inferences. A sends the pair to C.
C flips a coin b ∈ {0, 1} and returns Rb = rb + η + loss,
where η is the noise ranging around {rb+SNR} and loss is
the recording loss ranging around{−2dbm}.

Phase 2: A records some new dataset of RSS (differ with
the dataset used in phase 1) and gets their real state from C.

Guess: According to Rb, A makes a guess of b′.
We say that the scheme is secure if any polynomial-time A

in the above game has at most a negligible advantage.

AdvState−IND
scheme,A (1l) =

∣∣∣∣Pr[b′ ∼ b]− 1

2

∣∣∣∣ ≤ negl(l) (2)

where negl(l) denotes a negligible function in l.
Based on Table II, the noise level of Adv is similar to the

range of fluctuations, which could result in a stable RSS record
similar to an unstable one. This is advantageous as Adv could
not tell noises from normal RSS results.

Besides, as we can see in Figure 7, after recording user U’s
RSS trajectory data with manually-generated interferences,
we repeatedly record some other users’ RSS data with in-
terferences generated in the same pattern as U did. It turns
out that even if other users know how the human generates
interferences, the similarity between their RSS data and U’s
data is not high enough (most time the similarity is less than
70 percent) to pass the similarity checking.

Therefore, Adv can not launch a deducing attack to pass
similarity checking.

2) Impersonating attack. In our pairing scheme, Adv
may impersonate a legitimate device/AP by launching a
MITM attack. Since devices should reveal their RSS data
for similarity checking, we use a commit-reveal architecture
with time limits to prevent the possible harm caused by RSS
trajectory data exposure. We get the following proposition.

Proposition 1. Our scheme is secure against Adv’s imperson-
ating attack.

Proof. First, we define the probability that Adv can success-
fully pass similarity checking:

pA = maxCA
(pr[sim(SA, SD) ≥ t])

Here, CA is Adv’s commitment, CA=(SA)k where k is
the secret involved in commitment generation and SD is
committed by devices/Helper.

Since devices will not reveal their raw RSS data during
committing procedure and we have shown that Adv cannot
deduce legitimate device’s RSS trajectory data, the probability
that Adv can successfully pass similarity checking is:

p = maxk∈K(pr[Dis(Dec(CA, k), SD) ≤ d])

When CA and SD are determined, Adv needs to have the
ability to find a suitable k so that Dec(CA, k) and SD

have sufficient similarity. Since the commitment protocol
is collision resistant, it is hard for Adv to find k. Hence,
p is negligible and our scheme is secure against Adv’s
impersonating attack.

3) Radio interference attacks. If Adv were to use a very
powerful signal to interfere with AP’s communication, it will
lead to a pairing failure. As described in the threat model,
Adv could easily jam AP’s communication, due to the fact
that all radio-based pairings are commonly vulnerable to radio
interference attacks. However, launching such attacks could be
easily perceived by a user. Likewise, Adv still cannot get any
useful data through these means.

VI. EVALUATION

In this section, we present the evaluation of our scheme in
two aspects: the correlation of sensed RSS datasets and the
usability of our scheme. All experiments were conducted with
the following equipment: four desktop computers equipped
with an Intel-5300 Wireless Network Adapter as devices, one
laptop with FAST-FW54U wireless USB Adapter as AP, and
one laptop equipped with an Intel-1535 Wireless Network
Adapter acting as the Adv. Lastly, we focus on the reliability
of our scheme under the situation where another outdoor IoT
device is also in pairing mode.

A. Correlation

As we have introduced before, some manually-generated
interferences are added to enlarge the fluctuation for a better
pairing accuracy. Without manually-generated interferences,
the correlation coefficient between two devices (with a dis-
tance of 2m apart) in a normal environment could be really
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Figure 9: RSS trajectory with manually-generated interferences

low [17]: the correlation coefficient only hits about 0.53, as
shown in Figure 8.

However, when we apply certain human actions (using Tin
foil to wave over AP’s transmitting component) while AP is
broadcasting, we get the rather surprising results of a perfect
match, as seen in Figure 9.

In order to know how the distance factor could influence
the sensed RSS dataset and how the similarity would change
between two recorded RSS dataset, we conduct some exper-
iments in a real room. Specifically, the room size is about
20m2 (4mx5m), so we set the distance between devices from
1 to 5 meters, respectively (the distance between AP and
device is set to 2.5m, see Fig 10). As we can see in Table
III, in the stable situation, the overall trend of the correlation
coefficient is inversely proportional to the distance between
devices because the transmission power decreases. However,
the RSS dataset remains a high similarity rate with the help
of human intervention. According to the result shown in Table
III, a distance below 5 meters just has a slight impact over the
sensed RSS dataset since the disturbance caused by human is
much stronger than what distance does. That is, as long as the
fluctuation caused by human intervention is strong enough, the
sensed RSS datasets in the same time period can be highly
correlated. From here, we then try to understand how the

Table III: The Effect of Distance between Devices on
Correlation Coefficient

Distance (m) Without Intervention With
0 0.9527 0.8994
1 0.6503 0.8684
2 0.5388 0.9339
3 0.2854 0.83
4 0.4738 0.8181
5 -0.2602 0.7658

correlation coefficient will change with the varying distance
between AP and other devices. The experiment setup is shown
in Figure 11. Here we set the distance between devices to 2m
(to get the best correlation coefficient, see Table III). Then, we
move the devices away from AP, step-by-step (still, manually-

AP AP 

D1

D21m

2m

3m

4m

5m

2.5m

D2

D2

D2

D2

Figure 10: The environment details for different distance
between devices

Table IV: Impact of distance between Device and AP

Distance Correlation Distance Correlation
from AP (m) Coefficient from AP (m) Coefficient

0 0.9218 0.5 0.9184
1 0.9079 1.5 0.8917
2 0.9213 2.5 0.8225
3 0.7619 3.5 0.8407
4 0.8323 4.5 0.8284
5 0.8059

generated inferences for pairing are included). The result is
shown in Table IV. The correlation coefficients in all tested
distances reach 0.75, which is then chosen as a threshold for us
to tell whether two devices are in the same indoor environment.

After testing the impact of distance, we then evaluated our
scheme in a one-member home and a nine-member office, as
shown in Figure 12. To evaluate the reliability of our scheme,
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Figure 12: Details of two testbeds.

Adv with his outdoor device was placed outside the door, in
each testbed.

The whole test result can be seen in Figure 13. The location
index represents the locations that device D1 and device D2

are placed at. For example, the index “2-4” means that device
D1 is at position No.2 (black) while device D2 is at position
No.4 (red) in Figure 12.

All of the above results show that, once an appropriate
threshold is chosen, devices outside the house cannot get
a high similarity RSS trajectory and thus can not pass the
Helper’s similarity checking. On the other hand, the indoor
legitimate devices still can be paired successfully.

B. Usability

While we were able to get a threshold that allowed us
to distinguish indoor devices from those outside, to further
evaluate the usability of our scheme, we should also measure
the pairing rate ( successful pairing attemps

total pairing attemps ) and the pairing time of
our scheme, in a couple of real-world scenarios.

First of all, we wanted to determine the threshold to discern
indoor devices from outdoor ones. In order to determine
this, we ran some more experiments (10 seconds for each
experiment, repeated 50 times) using the same layout shown
in Figure 12 with more pairing devices. The ROC curve we
get is presented in Figure 14. When we set the correlation
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Figure 13: Coeff results

coefficient threshold to 0.7, the total FPR is 0.0213, while the
TPR could hit 1. However, this brings a higher rate of false
positives, which could badly harm the security of our setup.
Therefore, we raised the threshold to 0.75, and by doing so, the
FPR decreased to 0.0098, while the TPR remained at 0.9547,
which could still be an practical threshold to detect illegitimate
devices.

We then evaluated the relationship between pairing time and
the pairing rate. Results are shown in Figure 15. The minimum
time we needed to reach an average TPR of 80% was about
8s (waving hands around AP). When the pairing time went up
to 20s, we obtained a high TPR of about 99% and a low FPR
of about 0.1%. However, as the pairing time goes up, the time
required to extract information from raw data would increase
accordingly. We use a Raspberry Pi 3 (1.2Ghz, 1GB RAM)
analog IoT device to see how many resources the calculation
steps will cost. Luckily, as we can see in Figure 16, when
the pairing time reached 20 seconds (the raw data we got is
about 40kb), it takes only 0.33s to calculate special points (as
secret). We believe that is acceptable for users to run a program
for about 10s to pair all devices together, with one operation.
However, if there was a need to achieve higher security, we
could increase the pairing time to 20s.
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 Figure 14: Tell Adv from Four Legitimate Devices
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VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced the problem that the secure
pairing of resource-constrained IoT devices is hard to achieve,
especially when there is a need to pair more than two devices.
To solve this problem, we proposed an RSS-based multi-device
pairing scheme, where the pairing time costs were reduced and
the maximum distance allowed for successful pairing between
devices were prolonged.

However, there are some limitations of our scheme. For
example, our scheme requires a device to connect to AP’s
network in advance as a “Helpe” device to record the RSS data
used to determine the similarity during the similarity check
process. Also, since our scheme cannot be performed without
a “Helper” device, the first device to join AP’s network needs
to have an additional sensing capability to realize a secure
pairing procedure. Furthermore, since there is no standard for
hand waving, users may not be able to properly add manually
interferences to RSS data, which will reduce the usability of
our scheme.

In future work, we will consider using CSI data instead
of RSS data, which has the ability to offer more channel
details for us to protect devices in different rooms (in the same
house) from Adv. Besides, the use of CSI data may eliminate
the requirement of human intervention since detailed CSI
data can provide mutual location information between each
pair of devices. However, recording CSI data needs special
hardware, we are also looking forward to a more efficient
human intervention method over RSS trajectory while assuring
the same or stronger security.

REFERENCES

[1] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin OFlynn.
IoT goes nuclear: Creating a ZigBee chain reaction. In 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, may 2017.

[2] Michele De Donno, Nicola Dragoni, Alberto Giaretta, and Angelo
Spognardi. DDoS-capable IoT malwares: Comparative analysis and
mirai investigation. Security and Communication Networks, 2018:1–30,
2018.

[3] Jian Mao, Shishi Zhu, and Jianwei Liu. An inaudible voice attack to
context-based device authentication in smart iot systems. Journal of
Systems Architecture, 104:101696, 2020.

[4] Suman Jana, Sriram Nandha Premnath, Mike Clark, Sneha K. Kasera,
Neal Patwari, and Srikanth V. Krishnamurthy. On the effectiveness of
secret key extraction from wireless signal strength in real environments.
In Proceedings of the 15th MobiCom. ACM Press, 2009.

[5] Nitesh Saxena, Janerik Ekberg, Kari Kostiainen, and N Asokan. Secure
device pairing based on a visual channel. ieee symposium on security
and privacy, pages 306–313, 2006.

[6] Liang Liu, Zhaoyang Han, Liming Fang, and Zuchao Ma. Tell the device
password: Smart device wi-fi connection based on audio waves. Sensors,
19(3):618, 2019.

[7] Masoud Rostami, Ari Juels, and Farinaz Koushanfar. Heart-to-heart
(h2h). In Proceedings of the 2013 CCS. ACM Press, 2013.

[8] Markus Miettinen, N. Asokan, Thien Duc Nguyen, Ahmad-Reza
Sadeghi, and Majid Sobhani. Context-based zero-interaction pairing and
key evolution for advanced personal devices. In Proceedings of the 2014
CCS. ACM Press, 2014.

[9] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Madhumitha
Harishankar, Shijia Pan, Hae Young Noh, Pei Zhang, and Patrick Tague.
Do you feel what i hear? enabling autonomous IoT device pairing using
different sensor types. In 2018 IEEE Symposium on Security and Privacy
(SP). IEEE, may 2018.

[10] Shehzad Ashraf Chaudhry, Mohammad Sabzinejad Farash, Neeraj
Kumar, and Mohammed H Alsharif. Pflua-diot: A pairing free
lightweight and unlinkable user access control scheme for distributed
iot environments. IEEE Systems Journal, 2020.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3199383

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: George Mason University. Downloaded on June 13,2023 at 20:26:18 UTC from IEEE Xplore.  Restrictions apply. 



12

[11] Jingjie Zong, Shuangzhi Li, Di Zhang, Gangtao Han, Xiaomin Mu,
Ali Kashif Bashir, and Joel JPC Rodrigues. Smart user pairing
for massive mimo enabled industrial iot communications. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 207–212. IEEE, 2020.

[12] R. Mayrhofer and H. Gellersen. Shake well before use: Intuitive
and secure pairing of mobile devices. IEEE Transactions on Mobile
Computing, 8(6):792–806, jun 2009.

[13] Liang Cai, Kai Zeng, Hao Chen, and Prasant Mohapatra. Good neighbor:
Ad hoc pairing of nearby wireless devices by multiple antennas. In In
Proceedings of the 18th Annual Network & Distributed System Security
Conference (NDSS 2011, page 16532, 2011.

[14] Zi Li, Qingqi Pei, Ian Markwood, Yao Liu, and Haojin Zhu. Secret key
establishment via RSS trajectory matching between wearable devices.
IEEE Transactions on Information Forensics and Security, 13(3):802–
817, mar 2018.

[15] Tengxiang Zhang, Xin Yi, Ruolin Wang, Yuntao Wang, Chun Yu, Yiqin
Lu, and Yuanchun Shi. Tap-to-pair. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–21,
dec 2018.

[16] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo. T2pair: Secure
and usable pairing for heterogeneous iot devices. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 309–323, 2020.

[17] Jiansong Zhang, Zeyu Wang, Zhice Yang, and Qian Zhang. Proximity
based IoT device authentication. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications. IEEE, may 2017.

[18] Nirnimesh Ghose, Loukas Lazos, and Ming Li. Secure device
bootstrapping without secrets resistant to signal manipulation attacks.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, may
2018.

[19] Nirnimesh Ghose, Loukas Lazos, and Ming Li. SFIRE: Secret-free-in-
band trust establishment for COTS wireless devices. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communications. IEEE, apr 2018.

[20] Cas Cremers, Kasper B. Rasmussen, Benedikt Schmidt, and Srdjan
Capkun. Distance hijacking attacks on distance bounding protocols.
In 2012 IEEE Symposium on Security and Privacy. IEEE, may 2012.

[21] Bowen Wang, Yanjing Sun, Trung Q Duong, Long D Nguyen, and
Nan Zhao. Security enhanced content sharing in social iot: A directed
hypergraph-based learning scheme. IEEE Transactions on Vehicular
Technology, 69(4):4412–4425, 2020.

[22] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. End to end
secure anonymous communication for secure directed diffusion in iot.
In Proceedings of the 20th international conference on distributed
computing and networking, pages 445–450, 2019.

[23] Yunpeng Song, Zhongmin Cai, and Zhi-Li Zhang. Multi-touch
authentication using hand geometry and behavioral information. In 2017
Symposium on Security and Privacy. IEEE, may 2017.

[24] Sandeep Pirbhulal, Heye Zhang, Wanqing Wu, S C Mukhopadhyay, and
Yuanting Zhang. Heartbeats based biometric random binary sequences
generation to secure wireless body sensor networks. IEEE Transactions
on Biomedical Engineering, 65(12):2751–2759, 2018.

[25] N. Patwari, J. Croft, S. Jana, and S.K. Kasera. High-rate uncorrelated bit
extraction for shared secret key generation from channel measurements.
IEEE Transactions on Mobile Computing, 9(1):17–30, jan 2010.

[26] Jingyu Hua, Hongyi Sun, Zhenyu Shen, Zhiyun Qian, and Sheng Zhong.
Accurate and efficient wireless device fingerprinting using channel state
information. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. IEEE, apr 2018.

[27] Carlos Ruiz, Shijia Pan, Adeola Bannis, Ming-Po Chang, Hae Young
Noh, and Pei Zhang. Idiot: Towards ubiquitous identification of iot
devices through visual and inertial orientation matching during human
activity. In 2020 IEEE/ACM Fifth International Conference on Internet-
of-Things Design and Implementation (IoTDI), pages 40–52. IEEE,
2020.

[28] Kevin Chetty, G Smith, and K Woodbridge. Through-the-wall sensing
of personnel using passive bistatic wifi radar at standoff distances.
IEEE Transactions on Geoscience and Remote Sensing, 50(4):1218–
1226, 2012.

[29] Fadel Adib and Dina Katabi. See through walls with WiFi! In
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
ACM Press, 2013.

[30] Qifan Pu, Siyu Jiang, and Shyamnath Gollakota. Whole-home gesture
recognition using wireless signals (demo). acm special interest group
on data communication, 43(4):485–486, 2013.

[31] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. Bringing gesture
recognition to all devices. In Proceedings of the 2014 networked systems
design and implementation, pages 303–316, 2014.

[32] Fadel Adib, Zachary Kabelac, Dina Katabi, and Robert C Miller.
3d tracking via body radio reflections. In Proceedings of the 2014
networked systems design and implementation, pages 317–329, 2014.

[33] Kamran Ali, Alex Xiao Liu, Wei Wang, and Muhammad Shahzad.
Keystroke recognition using WiFi signals. In Proceedings of the 2015
MobiCom. ACM Press, 2015.

[34] Heba Abdelnasser, Moustafa Youssef, and Khaled A Harras. Wigest:
A ubiquitous wifi-based gesture recognition system. arXiv: Human-
Computer Interaction, 2015.

[35] Heba Abdelnasser, Khaled A. Harras, and Moustafa Youssef.
UbiBreathe: A Ubiquitous non-Invasive WiFi-based Breathing Estimator.
In Proceedings of the 2015 MobiHoc. ACM Press, 2015.

[36] Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han, and
Xiangliang Zhang. Exploring permission-induced risk in android
applications for malicious application detection. IEEE Transactions on
Information Forensics and Security, 9(11):1869–1882, 2014.

[37] Wei Wang, Yuanyuan Li, Xing Wang, Jiqiang Liu, and Xiangliang
Zhang. Detecting android malicious apps and categorizing benign apps
with ensemble of classifiers. Future Generation Computer Systems,
78:987–994, 2018.

[38] Wei Wang, Yaoyao Shang, Yongzhong He, Yidong Li, and Jiqiang Liu.
BotMark: Automated botnet detection with hybrid analysis of flow-based
and graph-based traffic behaviors. Information Sciences, 511:284–296,
feb 2020.

[39] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang.
Privacy risk analysis and mitigation of analytics libraries in the android
ecosystem. IEEE Transactions on Mobile Computing, 2020.

[40] Wei Wang, Alex X. Liu, Muhammad Shahzad, Kang Ling, and Sanglu
Lu. Understanding and modeling of wifi signal based human activity
recognition. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking. ACM Press, 2015.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3199383

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: George Mason University. Downloaded on June 13,2023 at 20:26:18 UTC from IEEE Xplore.  Restrictions apply. 



13

Heng Ye is a Ph.D. candidate at Beijing Jiaotong
University since 2016. His research interests include
differential privacy, privacy-preserving data sharing
and IoT.

Qiang Zeng is an Assistant Professor in the De-
partment of Computer Science and Engineering at
University of South Carolina. He received his Ph.D.
from Penn State University, and his Bachelor’s and
Master’s degrees from Beihang University. He is
a recipient of an NSF CAREER Award. His main
research interest is Computer Systems Security, with
a focus on Cyber-Physical Systems, Internet of
Things, and Mobile Computing. He also works on
Adversarial Machine Learning.

Jiqiang Liu received the Ph.D. degree from Beijing
Normal University in 1999. He now works at Beijing
Jiaotong University as a professor as well as Dean
of school of soft engineering. He has published
more than 120 research papers. His research interests
include trusted computing, privacy preserving and
security protocol.

Xiaojiang (James) Du is the Anson Wood Bur-
chard Endowed-Chair Professor in the Department
of Electrical and Computer Engineering at Stevens
Institute of Technology. He was a tenured professor
at Temple University between August 2009 and Au-
gust 2021. Dr. Du received his B.S. from Tsinghua
University, Beijing, China in 1996. He received his
M.S. and Ph.D. degree in Electrical Engineering
from the University of Maryland, College Park in
2002 and 2003, respectively. His research interests
are security, wireless networks, and systems. He has

authored over 500 journal and conference papers in these areas, including
the top security conferences IEEE S&P, USENIX Security, and NDSS. Dr.
Du has been awarded more than 8 million US Dollars research grants from
the US National Science Foundation (NSF), Army Research Office, Air Force
Research Lab, the State of Pennsylvania, and Amazon. He won the best paper
award at several conferences, such as IEEE ICC 2020, IEEE GLOBECOM
2014 and the best poster runner-up award at the ACM MobiHoc 2014. He
serves on the editorial boards of three IEEE journals. Dr. Du is an IEEE
Fellow, an ACM Distinguished Member, and an ACM Life Member.

Wei Wang received the Ph.D. degree from Xi’an
Jiaotong University, in 2006. He was a Post-Doctoral
Researcher with the University of Trento, Italy, from
2005 to 2006. He was a Post-Doctoral Researcher
with TELECOM Bretagne and with INRIA, France,
from 2007 to 2008. He was also a European ERCIM
Fellow with the Norwegian University of Science
and Technology (NTNU), Norway, and with the
Interdisciplinary Centre for Security, Reliability and
Trust (SnT), University of Luxembourg, from 2009
to 2011. He is currently a full Professor with school

of computer and information technology, Beijing Jiaotong University, China.
He has authored or coauthored over 100 peer-reviewed articles in various
journals and international conferences. His main research interests include
mobile, computer, and network security. He is an Elsevier “highly cited
Chinese Researchers”. He is an Editorial Board Member of Computers &
Security and a Young AE of Frontiers of Computer Science.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3199383

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: George Mason University. Downloaded on June 13,2023 at 20:26:18 UTC from IEEE Xplore.  Restrictions apply. 


