
Deobfuscation of Virtualization-obfuscated Code
through Symbolic Execution and Compilation

Optimization

Mingyue Liang1, Zhoujun Li1(�), Qiang Zeng2, and Zhejun Fang3

1 Beihang University, Beijing, China
{liangmy,lizj}@buaa.edu.cn

2 Temple University, Philadelphia PA, USA
qzeng@temple.edu

3 CNCERT/CC, Beijing, China
fzj@cert.org.cn

Abstract. Virtualization-obfuscation replaces native code in a binary
with semantically equivalent and self-defined bytecode, which, upon ex-
ecution, is interpreted by a custom virtual machine. It makes the code
very difficult to analyze and is thus widely used in malware. How to
deobfuscate such virtualization obfuscated code has been an important
and challenging problem. We approach the problem from an innovative
perspective by transforming it into a compilation optimization problem,
and propose a novel technique that combines trace analysis, symbolic
execution and compilation optimization to defeat virtualization obfusca-
tion. We implement a prototype system and evaluate it against popular
virtualization obfuscators; the results demonstrate that our method is
effective in deobfuscation of virtualization-obfuscated code.

Keywords: Deobfuscation, Virtualization Obfuscation, Symbolic Exe-
cution, Compilation Optimization.

1 Introduction

Virtualization-based obfuscation replaces the code in a binary with semantically
equivalent bytecode, which can only be interpreted by a virtual machine whose
instruction set and architecture can be customized. Thus, it makes the resulting
code difficult to understand and analyze, and is widely used in malware [1].
When regular dynamic and static analyzers are directly applied to analyzing such
code, their execution gets trapped into the VM interpreter and thus can hardly
reveal the real logic of the code. Therefore, how to deobfuscate virtualization-
obfuscated code has been an important and challenging problem.

Existing techniques either reverse engineer the virtual machine to infer the
logic behind the bytecode [2], or execute the obfuscated code and work on the in-
struction traces corresponding to the executed bytecode [3–5]. While the former

228

2

relies on a complete reverse engineering of the virtual machine, which is challeng-
ing in itself, the latter requires advanced control/data-flow analysis (which usual-
ly involves many false negatives and positives and requires many ad hoc methods
for handling different obfuscations) to remove redundant code. Indeed, due to
garbage code insertion, one of the main challenges to deobfuscate virtualization-
obfuscated code is how to correctly remove unneeded code and generate concise
code. This challenge is not well resolved yet.

Our insight is that redundant code elimination is well resolved and implement-
ed in the field of compilation optimization; thus, if we can leverage the power of
compilers, the challenge above can be resolved elegantly. Thus, we approach the
challenge from an innovative compilation-optimization perspective. Specifically,
we first apply symbolic execution to summarize the semantics of each bytecode
handler (the execution of each bytecode corresponds to the invocation of its
handler), and then automatically transform the semantics of a handler into a
function represented in some high-level programming language. Next, after the
execution of bytecode is transformed into a piece of source code that represents
the invocations of the corresponding functions, we leverage a compiler to compile
the source code. Consequently, the compiler eliminates unneeded code of VM,
such as operations on virtual stack and registers, thanks to compilation opti-
mization, and generates deobfuscated code, which then can be analyzed using
various off-the-shelf tools.

We made the following contributions.

a) We propose an innovative idea that resolves the deobfuscation challenge from
the perspective of compilation optimization, which makes it possible to reuse
powerful code optimizations implemented in modern compilers.

b) We propose a symbolic execution based method for automatically extracting
semantic information of bytecode handlers, and represent the handlers in
high-level programming languages.

c) We have implemented a prototype system and evaluated it against represen-
tative obfuscators including VMProtect[6] and Code Virtualizer[7].

2 Background and Challenges

This section describes the background about virtualization obfuscation and dis-
cusses the challenges in the process of deobfuscation and code recovery.

2.1 Background: Virtualization Obfuscation

A virtualization obfuscator takes a binary file as input, parses its machine code
instructions, and translates them to self-defined bytecode, which can be inter-
preted by an embedded interpreter during execution. Thus, a virtualization ob-
fuscator has to implement a complete virtual machine that contains the virtual
instruction set definition and a corresponding bytecode interpreter. Below, we
describe some important concepts and details for virtualization obfuscation.

3

Virtual Machine. A virtual machine, also called an emulator or interpreter,
is the core of an obfuscation system for interpreting bytecode instructions. As
the original machine code is removed and replaced by virtual instructions, the
obfuscated binary embeds a corresponding interpreter in the code section. A
Virtual Program Counter in a VM works like the EIP register in x86 architecture;
it stores the address pointing to the location of the current virtual instruction
(described below). When interpreting virtual instructions, the virtual machine
fetches the instruction pointed to by the VPC and execute it, after which VPC
will be updated to point to the next instruction.

Virtual Instructions. Virtual instructions are also called bytecode instruction-
s. Virtual instructions are translated from original machine code and encoded
in the data section of the obfuscated binary. The virtual machine fetches byte-
code as read-only data and interprets it with embedded hander functions. The
execution of a virtual instruction corresponds to an invocation of the correspond-
ing handler function. As the virtual instruction set is privately defined by the
obfuscator and is quite different from public architectures such as Intel, ARM
and MIPS, regular static analysis tools cannot analyze virtualization obfuscated
code.

Virtual Registers. A virtual machine uses virtual registers to store temporary
variable values, but they do not exactly match the x86/x64 general-purpose reg-
isters. For example, VMProtect VM has 16 virtual registers, which are randomly
mapped to 8 Intel x86 registers to increase obfuscation.

Virtual Stack. Stack-based VMs are popular in virtualization obfuscation,
and is also the target architecture of our work. In a stack-based VM, all data
passing operations go through a virtual stack, and registers and memory never
exchange data directly. Given an X86 instruction add eax,ebx, its equivalent
virtual instruction sequence in a stack-based VM is:

vPush vR0

vPush vR1

vAdd

vPop vFlag

vPop vR2

The first double vPush instructions push two registers onto a virtual stack,
after which the vAdd pops two variables from the stack to perform the addition
and then stores the result and the side-effect flag back to the stack. The last
vPop instructions pop the addition result and the flag to registers.

2.2 Challenges of Deobfuscation

While conventional runtime-packed code can be extracted from the memory
when the code is executed and unpacked [8], virtualization-obfuscated code n-

4

ever restores the original code in the memory during execution. Thus, regular
unpackers cannot recover the original code.

Another challenge is various bytecode-level obfuscation can be applied to
the virtualization-obfuscated code, which makes the extracted bytecode even
harder to analyze and understand. For example, a simple x86 instruction can
be translated into several virtual instructions which keep same semantic but
are much more complex to understand. A concrete example is logical operation
obfuscation in VMProtect. A VM in VMProtect does not generate not, and, or
or xor instructions but only nor instructions. All these logical operations are
implemented in nor instructions; e.g., or(a,b) = nor(nor(a,b), nor(a,b)).

Various VM architecture of virtual obfuscators is also a challenge. Conven-
tional deobfuscation tools works well on general architecture (Intel, ARM and
MIPS) but do not support customized VM architecture without specialized adap-
tion. When deobfuscating virtualization-obfuscated code, there is a lack of a
generic technique that tackles various VM architecture with different kinds of
bytecode-level obfuscation. Our goal is to conquer this challenge and propose
such a generic technique.

3 Deobfuscation through Symbolic Execution and
Compilation Optimization

3.1 Main Idea and Architecture

Instead of implementing various deobfuscation algorithms, we creatively pro-
pose to leverage the power of modern compilers, which perform advanced code
optimization, to resolve the deobfuscation problem. However, it is infeasible to
apply a regular compiler, such as gcc and clang, to processing custom virtual in-
structions directly. We thus propose to convert each virtual-instruction handler,
which is relatively simple, to a function coded in some high-level programming
language, and our approach is to summarize the semantics of handlers through
symbolic execution. Subsequently, a sequence of virtual instructions can be rep-
resented as a sequence of invocations of these functions, which then can be
processed by a regular compiler for automatic optimization to eliminate garbage
code and obtain concise resulting code.

Fig. 1 shows the architecture of our deobfuscation system, which comprises
the following components: 1) A trace analysis module, which records runtime
information of the obfuscated binary and does offline analysis to identify and
extract handler functions. 2) A symbolic execution module, which analyzes se-
mantic information of each handler function and outputs symbolic expressions
as the function summary. 3) A compilation module, which translates the sym-
bolic expressions to C code and applies compilation optimization to the C code
to generate deobfuscated code.

5

Trace

Log

Handler

Handler

Handler

Symbolic Expression

Symbolic Expression

Symbolic Expression

Deobfuscated

binary

C code

C code

C code

Code Template

Obfuscated

Binary

Input Trace analysis Symbolic execution Compilation optimization Output

Fig. 1. Overview of our approach.

3.2 Trace Record and Offline Analysis

When running the obfuscated binary, our system records the dynamic trace,
which contains instruction sequences and their operations on registers and mem-
ory. We use Pin [9], a binary instrument tool developed by Intel, to record the
trace. Pin provides instrumentation interface on instruction level for user to in-
sert callback function before or after execution of instructions, which gives the
chance to record all context information. Although Pin allows us to run analysis
routine upon execution of program, we prefer to record all information to a file
and do offline analysis on the trace file. By decoupling trace recording and the
analysis, we can apply multiple rounds of analysis to the trace without running
the executable repeatedly. Once we have the trace file, we can reconstruct the
control flow graph(CFG) and extract virtual instruction handlers.

CFG Construction. As the code is obfuscated with many indirect jumps,
reconstruction the CFG statically is very difficult. For instance, below shows the
dispatcher code extracted from VMProtect 2.13 (with most junk code deleted
as a matter of convenience for readers).

mov al, byte ptr [esi-0x1]

mov ecx, dword ptr [eax*4+0x4058da]

mov dword ptr [esp+0x28], ecx

push dword ptr [esp+0x28]

ret 0x2c

The dispatcher fetches the opcode of the instruction pointed to by the VPC,
which is stored in esi register, and then jumps to the corresponding handler
according to the opcode, which is done by an indirect jump through push and
ret instruction. Without dynamic execution, it would be difficult to determine
the target of such indirect jumps. Static analysis tools such as IDA Pro [10] is
unable to generate the CFG for such case.

We instead choose to reconstruct the CFG from the dynamic execution trace.
The basic steps of reconstructing the CFG from trace are as follows:

Step 1: Initialization of basic blocks. Initialize each instruction of the trace to a
basic block. For the sequence of instructions in the trace such as I1I2 . . .,
the instructions are initialized to basic blocks B1B2 . . ., respectively; a

6

Fig. 2. A typical fetch-decode-dispatch CFG.

directed edge is then added from B1 to B2 according the instruction
order of trace. We then get a directed graph structure.

Step 2: Emerging basic blocks. For each connected pair of basic blocks B1 and
B2 are merged into a new block named B12, if and only if the outbound
degree of B1 and inbound degree of B2 are both 1.

Step 3: Loop. The processing goes back to Step 2 until no more blocks can be
merged. Then we get our CFG.

Handler Identification. The CFG of a virtualization-obfuscated binary is
characteristic, mainly because of dispatch-based virtual instruction handling.
Most obfuscators such as VMProtect and Code Virtualizer, implement the vir-
tual machine as a typical fetch-decode-dispatch loop[3], which forms many out-
going branches from the dispatcher node, as shown in Fig. 2. The dispatcher
in a virtual machine jumps to a handler function according to the opcode of a
virtual instruction and every handler functions return to dispatcher to continue
the execution of the next instruction.

According to this feature, we can extract the dispatcher and the handlers
by analyzing the CFG. At first, we detect all circle in the graph; each circle
in CFG represents a separate execution path of interpretation loop. Secondly,
we solve the intersection set of all circles, then the common nodes are marked
as dispatcher of interpreter. For each circle, nodes other than dispatcher nodes
will be collected sequentially according to execution order and identified as a
handler.

3.3 Semantic Analysis of Handlers

Handlers are functions that virtual machine used to interpret virtual instruction-
s. We can extract semantic information of virtual instructions by analyzing cor-
responding handler functions. We propose to apply a symbolic execution based
approach to extracting semantics of each handler.

The overall interpretation logic of virtual machine is too complicated to be
symbolically executed as a whole due to time and memory overhead. Our ap-
proach instead applies symbolic execution to handler functions separately. Each
handler function processes a single virtual instruction, which usually has simple
logic, therefore the path explosion problem is naturally avoided and symbolic

7

expressions will not be too complex. In addition, with the use of symbol execu-
tion, many obfuscations on handler functions such as junk code insertion and
instruction replacement are automatically tackled by the symbolic engine.

In our design, all registers and memory in handler function are initialized
as symbolic variables. After symbolic execution of the function, the symbolic
execution engine outputs a series of symbolic expressions, which represents the
operations the handler does.

Here is an example of vPushReg4 handler in VMProtect. Our prototype
system uses Miasm [11] as our symbolic execution engine, which symbolically
executes binary code of the handler and returns symbolic expressions in Miasm
IR format as below. The disassembly and the symbolic expression are shown
below (’@’ in Miasm IR expressions means dereference of address):

and al, 0x3c

mov edx, dword ptr [edi+eax*1]

sub ebp, 0x4

mov dword ptr [ebp], edx

jmp 0x40100a

EAX = {(EAX_init[0:8]&0x3C) 0 8, EAX_init[8:32] 8 32}

EDX = @32[(EDI_init + {(EAX_init[0:8]&0x3C) 0 8, EAX_init[8:32]

8 32})]

EBP = (EBP_init+0xFFFFFFFC)

@32[(EBP_init+0xFFFFFFFC)] = @32[(EDI_init+{(EAX_init[0:8]&0x3C)

0 8, EAX_init[8:32] 8 32})]

From the expressions we know that this handler loads the value at a memory
address based by edi offset by eax & 0x3C, then stores the value to where ebp
points to. Assuming edi represents the initial address of the virtual register array
and ebp the virtual stack top, this handler simply pushes a virtual register value
to the virtual stack.

The above example shows that the symbolic expression of the handler func-
tion can fully express its operations; that is, it can capture the semantic infor-
mation of the corresponding virtual instruction.

3.4 Compilation and Code Recovery

While function summary can eliminate dead code within a handler, it is inef-
fective in handling obfuscations among virtual instructions, which is one of the
main challenges of deobfuscation we aim to conquer. When CISC instructions
(e.g., x86) are converted into virtual RISC instructions, the problem is more
severe, as a single CISC instruction is usually transformed into multiple virtual
RISC instructions. It will significantly benefit code analysis and understanding if
we can convert the multiple virtual RISC instructions back into the single CISC
one. An intuitive approach is to prepare a whole set of templates for transfor-
mation, each of which tries to match a specific sequence of RISC instructions

8

and recover the original CISC instruction. Such template-based transformation
has multiple drawbacks: 1) A lot of tedious work has to be done to prepare
the transformation templates; worse, whenever a new VM is encountered, they
have to be updated. 2) During the transformation, the register information gets
lost and more inference must be done to restore it. 3) Obfuscators often apply
additional obfuscation on the virtual-instruction layer, which may render the
template match ineffective.

We consider such obfuscation as an opposite process of optimization, since
it replaces the original concise instructions with more complex but semantical-
ly equivalent code, while deobfuscation aims to optimize away the intermediate
variables and redundant instructions introduced by virtual machine. Thus, we
propose to use modern compiler such as gcc and clang, which have been devel-
oped for years and proven to have excellent optimization capabilities, to optimize
the virtual instructions by relying on their built-in data flow analysis and live
variable analysis; this way, we can remove redundant instructions and generate
concise code.

Translation of Symbolic Expressions. After the previous semantic analysis
(Section 3.3), we have automatically generated symbolic expressions for each
virtual instruction handler. But these symbolic expressions are still unable to be
directly processed by the compiler. We have implemented a Miasm translator
module to translate them to C code, which hence can be processed by compil-
ers. Let us continue the example in Section 3.3. The symbolic expressions of
vPushReg4 are translated to C code:

*(uint32_t *)(EBP + 0xfffffffc) = *(uint32_t *)(EDI + EAX & 0x3c);

EBP = EBP + 0xfffffffc;

The registers are treated as unsigned integer variables, and are converted to
pointers when used as addresses.

Compilation Optimization. The following optimizations are conducted to
obtain concise and clear code: 1) symbolic variables are translated to local vari-
ables if possible; 2) the virtual stack in a virtual machine is converted to a local
array variable, and stack pointers now point to array elements; and 3) every vir-
tual instruction handler is defined as an inline function or C macro, and hence
the entire bytecode sequence will be translated to a sequence of calls to inline
functions.

Let us take VMs in VMProtect as an example: VMProtect reuses the x86 call
stack as its virtual stack with ebp as stack pointer. When converting to C code,
we define a virtual stack as a large enough local array and the stack pointer as
a pointer to array elements. Fig. 3 is a sample of the converted C code.

In this example, as the handler functions are defined as inline functions,
which are invoked by a global function vmp func, the compiler will automatically
optimize the generated code. An example on push and pop optimization is shown

9

#define STACK_SIZE 2048

static uint8_t *sp;

// handlers translated from

// symbolic expressions.

static inline void

vPushReg4(uint32_t *reg_ptr){

sp -= 4;

*((uint32_t *)sp) = *reg_ptr;

}

static inline void

vPopReg4(uint32_t *reg_ptr){

*reg_ptr = *((uint32_t *)sp);

sp += 4;

}

void vmp_func()

{

uint32_t regs[16];

uint8_t stack[STACK_SIZE];

sp = &stack[STACK_SIZE/2];

/** virtual instructions **/

...

vPushReg4(®s[0]);

vPopReg4(®s[1]);

...

}

Fig. 3. A sample of the converted C code.

Before compiling

void vmp_func()

{

...

vPushReg4(®s[0]);

vPopReg4(®s[1]);

...

}

After inline

void vmp_func()

{

...

sp -= 4;

*((uint32_t *)sp) = regs[0];

regs[1] = *((uint32_t *)sp);

sp += 4;

...

}

After optimization

void vmp_func()

{

...

regs[1] = regs[0];

// sp not changed.

...

}

Fig. 4. An example on push & pop optimization.

as Fig. 4. After compilation optimization the redundant stack operation code is
eliminated, which makes the result code more concise and easier to understand.

4 Evaluation

We have evaluated our system against VMProtect and Code Virtualizer; both are
well-known commercial obfuscators. We first performed some micro-benchmark
experiments, which consider the following four samples:

– mov, which has only a single mov instruction.
– binop, which tests binary operators like add,sub,and,or and so on.
– xor, which is a sample of an xor encoder.
– base64, which is a sample of a base64 encoder.

We recorded the count of original and obfuscated instruction trace, dispatch-
er address, count of handlers and deobfuscated instruction trace. As shown in
Table 1, we applied our method to the four samples obfuscated by VMProtect;

10

Table 1. Evaluation against different samples obfuscated by VMProtect.

Sample
Original

Trace
Obfuscated

Trace
Dispatcher

Address
Handlers

Deobfuscated
Trace

mov 1 357 0x40320b 5 7
binop 128 10276 0x4074f9 20 304
xor 667 123366 0x407592 20 3123
base64 485 107998 0x407063 21 2876

Table 2. Evaluation against base64 sample obfuscated by different obfuscators.

Obfuscator
Original

Trace
Obfuscated

Trace
Dispatcher

Address
Handlers

Deobfuscated
Trace

VMProtect 1.81 485 107998 0x407063 21 2876
VMProtect 2.13 485 1028805 0x4074f9 22 3445
CodeVirtualizer 1.3.8 485 1007378 0x405556 36 3122

plus, the base64 sample is obfuscated by different obfuscators as shown in Table
2. According to the results of manual inspection, our method correctly locates
the dispatcher address and extracts the handlers from the trace. We use gcc as
our compiler with O3 optimization level against the translated virtual instruc-
tion trace; the results demonstrate that the trace count is greatly reduced after
deobfuscation.

Fig. 5 shows an intuitive comparison when we applied our method on the
binop sample, whose source code is shown Fig. 5(a). After optimizing with com-
piler and decompiling with IDA Pro, the deobfuscated the pseudo C code, shown
as Fig. 5(b), is concise and equivalent to the original code. Basic array memory
access and most binary operations such as add,and,or,shift etc. between array
elements are precisely recovered. The xor and subtraction operators are not ex-
actly same as origin but the deobfuscated code has equivalent semantic.

5 Related Work

Deobfuscation approaches for virtualization-based obfuscated binaries have long
been part of the state-of-the-art research in reverse engineering and binary anal-
ysis. Rolles [2] points out the essence of virtualization obfuscation is bytecode
interpretation, and his paper describes a generic approach to defeating such pro-
tection by completely reversing the emulator, however, no automated system is
presented. Coogan et al. [4] present a semantics-based approach to deobfuscating
virtualization-obfuscated software. In that work, obfuscated binary is executed
and all instructions execution information are recorded in a trace file; then,
instructions that interact with the system directly or indirectly are kept with
other instructions discarded. It does not perform further deobfuscation, though.
Sharif et al. [3] propose an automatic analysis method to extract the virtual

11

// Original source.

void vmp_func(int x[],

int y[], char z)

{

y[0] = x[1] + x[0];

y[1] = x[2] ^ x[1];

y[2] = x[3] & x[2];

y[3] = x[4] | x[3];

y[4] = x[4] - x[5];

y[5] = x[5] << z;

y[6] = x[6] >> z;

y[7] = x[7] / x[8];

y[8] = x[8] % x[9];

y[9] = x[10] * x[9];

}

(a)

// Deobfuscated code.

// (decompiled by IDA Pro.)

signed int vmp_func()

{

int v0; // eax@1

signed int result; // eax@1

int *v2; // [sp+440h] [bp-40Ch]@0

int *v3; // [sp+444h] [bp-408h]@0

char v4; // [sp+448h] [bp-404h]@0

*v3 = v2[1] + *v2;

v3[1] = (v2[2] | v2[1]) & ~(v2[1] & v2[2]);

v3[2] = v2[3] & v2[2];

v3[3] = v2[4] | v2[3];

v3[4] = ~(v2[5] + ~v2[4]);

v3[5] = v2[5] << v4;

v3[6] = v2[6] >> v4;

v3[7] = v2[7] / v2[8];

v0 = v2[8] % v2[9];

dword_804A130 = 0;

v3[8] = v0;

result = 36;

v3[9] = v2[10] * v2[9];

return result;

}

(b)

Fig. 5. Source and deobfuscated code of binop.

program counter information and construct the original control flow graph from
a virtualized binary; Kalysch et al. [12] present VMAttack, an IDA Pro plugin,
as an assistance tool for analyzing virtualization-packed binaries. Both are new
analysis methods but unable to recover the deobfuscated code. While Yadegari
et al. [13] pointed out compiler optimization can assist deobfuscation, specifi-
cally arithmetic simplification in their case (Section III.C), they did not reuse
any compilers as a generic approach to deobfuscation. Instead, they use taint
analysis to identify instructions for value propagation, and various specialized
optimizations for simplifying the code; plus, symbolic execution is used to gen-
erate inputs for running a binary. To our knowledge, our system is the first that
reuses modern compilers and leverages compilation optimization as a generic
approach to deobfuscating virtualization-obfuscated code.

6 Conclusion

Virtualization obfuscation has been proven to be one of the most effective tech-
niques to obfuscate binaries. This paper presents a novel automated deobfus-

12

cation method. It first constructs a CFG via offline trace analysis to detect
dispatcher and handler functions, and symbolically execute the handlers to gen-
erate symbolic expressions. Then, symbolic expressions are translated into C
code and bytecode is converted into invocations of the C functions, which are
then optimized by compilers to recover simplified and semantically equivalent
code. We have implemented a prototype system and evaluated it against popular
commercial obfuscators. The experimental result indicates that our system can
successfully recover concise code from virtualization-obfuscated code. Our work
demonstrates that compilation optimization is an effective and generic approach
to tackling virtualization obfuscation.

Acknowledgments. This work was supported in part by National High Tech-
nology Research and Development Program of China (No. 2015AA016004), the
National Key R&D Program of China (No. 2016QY04W0802).

References

1. Nagra, J., Collberg, C.: Surreptitious software: obfuscation, watermarking, and
tamperproofing for software protection. Pearson Education (2009)

2. Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on
Offensive Technologies.(WOOT). (2009)

3. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: Security and Privacy, 2009 30th IEEE Symposium on, IEEE (2009)
94–109

4. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM conference
on Computer and communications security, ACM (2011) 275–284

5. HexEffect: Virtual deobfuscator. http://www.hexeffect.com/virtual deob.html
6. VMProtect: Vmprotect software protection. http://vmpsoft.com/
7. Oreans: Code virtualizer. https://oreans.com/codevirtualizer.php
8. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: Sok: Deep packer

inspection: A longitudinal study of the complexity of run-time packers. In: Security
and Privacy (SP), 2015 IEEE Symposium on, IEEE (2015) 659–673

9. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Acm sigplan notices, ACM (2005) 190–200

10. Eagle, C.: The IDA pro book: the unofficial guide to the world’s most popular
disassembler. No Starch Press (2011)

11. CEA: cea-sec/miasm: Reverse engineering framework in python.
https://github.com/cea-sec/miasm

12. Kalysch, A., Götzfried, J., Müller, T.: Vmattack: Deobfuscating virtualization-
based packed binaries. In: ARES. (2017)

13. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: Security and Privacy (SP), 2015
IEEE Symposium, IEEE (2015) 674–691

