
Kruiser: Semi-synchronized Non-
blocking Concurrent Kernel Heap

Buffer Overflow Monitoring
Donghai Tian1,2, Qiang Zeng2, Dinghao Wu2,

Peng Liu2 and Changzhen Hu1

1 Beijing Institute of Technology

2 The Pennsylvania State University

1

NDSS 2012

Kernel Heap Buffer Overflow

2

Kernel
Object

Kernel
Object

Function
Pointer

Motivation

• There are more and more kernel buffer
overflow exploits.

• To our knowledge, there are no practical
mechanisms that have been widely
deployed detecting kernel heap buffer
overflows.

3

Current Methods: Limitations 1 & 2

• Some approaches perform detection before
each buffer write operation.
[PLDI '04], [USENIX ATC '02], [NDSS '04]

• Some approaches do not check heap buffer
overflows until a buffer is de-allocated.
[LISA '03], [BLACKHAT '11]

4

High overhead!

Large detection delay!

Our Idea

5

Program
execution

Program
execution

Security
checking

Security
checking

Program
execution
Program
execution

Security
checking

Security
checking

Core 1 Core 2

Inlined Checking Concurrent checking

Program
execution

Sync.

Canary

Basic Method

• Canary-based Concurrent
Monitoring

Network
drivers

File
extenstions

......

Heap
metadata

6

Hook

Hook

Kernel Object

Monitor

Challenges

• Self-protection.
• Monitor and the metadata

• Synchronization.
• Races between hooks and monitor

• Compatibility.
• OS and hardware

7

Out-of-the-VM Architecture

8

Core 1 Core 2

(Our previous CCS submission - rejected)

Hybrid VM monitoring Architecture

Network
drivers

File
systems

Monitor

Guest VM1

...... Heap
metadata

Guest VM2

VMM

Secure
address space

Kernel
address space

Entry code

Exit code

Entry code

Exit code

Hooks

9

(NDSS submission - accepted)

Now, Kernel Cruising

• How to gather canary location info?

• How to deal with the races between hooks and
monitor?

10

Kernel Cruising

• Page Identity Array (PIA)
• Heap buffer canary location information
• Other information

• Race conditions

• Concurrent updates by two hooks
• Inconsistent reads by monitor
• Time of check to time of use (TOCTTOU)

11

Semi-synchronized Non-blocking
Cruising Algorithm

• Avoid Concurrent Entry Updates.
• Put the PIA entry update operations into the

critical section.

12

Resolve TOCTTOU

Hook:
if the page is moved to the heap page pool
 flag = true;
else if the page is removed from the heap
 flag = false;
Monitor:
if (the canary is tempered) {
 if (flag == true) { // the page is still in heap
 report overflow!
 }
}

13

true->false->true
A B A

ABA Hazard Solution

if the page is moved to the heap page pool
 version++;
else if the page is removed from the heap
 version++;
…
if (the canary is tampered) {
 if (version == original version) {
 report overflow!
 }
} 14

Secure Canary Generation

• R1) The canaries are not predictable.

• R2) The canary generation and verification
algorithms should be efficient.

• Generate unpredictable canaries using
RC4 from a per-virtual-page random value.

15

Outline

• Idea
• Architecture
• Kernel Cruising
• Evaluation
• Related Work
• Summary

16

Effectiveness

• We exploited five heap buffer overflow
vulnerabilities in Linux, including three
synthetic bugs and two real world
vulnerabilities .

• All the overflows are successfully detected
by Kruiser.

17

Performance Overhead

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04

pe
rlb

enc
h

bz
ip2 gc

c
mcf

go
bm

k

hm
mer

sje
ng

lib
qu

ant
um

h2
64

ref

om
net

pp ast
ar

xa
lan

cbm
k

ge
o.

mean

Ex
ec

ut
io

n
tim

e

SIM-Kruiser Kruiser

18

SPEC CPU2006 performance (normalized to the execution time of original Linux).

Scalability

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Concurrency

R
eq

ue
st

s p
er

 se
co

nd
Original
SIM-Kruiser
Kruiser

19

Throughput of the Apache web server for varying numbers of concurrent requests.

Detection Latency

20

Different cruising cycle for different applications in the SPEC CPU2006 benchmark

10 of 12 applications have less than
29ms (for scanning the kernel heap).

Outline

• Idea
• Architecture
• Kernel Cruising
• Evaluation
• Related work
• Summary

21

Related Work

• Countermeasures Against Buffer Overflows
• StackGuard [USENIX Security '98]
• Heap Integrity Detection [LISA '03]
• Cruiser [PLDI '11]
• DieHard [PLDI '06] and DieHarder [CCS '10]

• VM-based Methods
• SIM [CCS '09]
• OSck [ASPLOS '11]

22

Summary

• Kruiser can achieve concurrent monitoring
against kernel heap buffer overflows.
• Non-blocking
• Semi-synchronized
• NO false positive

• The hybrid VM monitoring scheme

provides high efficiency without sacrificing
the security guarantees.

23

24

Thank you!

Questions?

Outline

• Background and Idea
• Architecture
• Kernel Cruising
• Evaluation
• Related Work
• Summary

25

Non-blocking Cruising Algorithm

27

Avoid Read
Inconsistency!

Is the page still
used by the heap?

Monitor(){
uint ver1, ver2;
for (int page = 0; page < ENTRY NUMBER; page++){

ver1 = PIA[page].version;
if (The page is non-heap page)

continue; // Bypass non−heap page
Read the metadata stored in PIA[page];
ver2 = PIA[page].version;
if (ver1 != ver2)

continue; // Metadata was updated
for (each canary within the page){

if (the canary is tampered){
DoubleCheckOnTamper(page, ver1);

}
}

}

	Kruiser: Semi-synchronized Non-blocking Concurrent Kernel Heap Buffer Overflow Monitoring
	Kernel Heap Buffer Overflow
	Motivation
	Current Methods: Limitations 1 & 2
	Our Idea
	Basic Method
	Challenges
	Out-of-the-VM Architecture�
	Hybrid VM monitoring Architecture�
	Now, Kernel Cruising
	Kernel Cruising
	Semi-synchronized Non-blocking Cruising Algorithm
	Resolve TOCTTOU
	ABA Hazard Solution
	Secure Canary Generation
	Outline
	Effectiveness
	Performance Overhead
	Scalability
	Detection Latency
	Outline
	Related Work
	Summary
	幻灯片编号 24
	Outline
	Limitations of Current Methods(2/2)
	Non-blocking Cruising Algorithm
	Guaranteed Detection

