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Motivation 

• There are more and more kernel buffer 
overflow exploits. 
 

• To our knowledge, there are no practical 
mechanisms that have been widely 
deployed detecting kernel heap buffer 
overflows. 
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Current Methods: Limitations 1 & 2 

• Some approaches perform detection before 
each buffer write operation. 
[PLDI '04], [USENIX ATC '02], [NDSS '04] 
 
 

• Some approaches do not check heap buffer 
overflows until a buffer is de-allocated. 
[LISA '03], [BLACKHAT '11] 
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High overhead!  

Large detection delay! 



Our Idea 
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Canary 
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Challenges 

• Self-protection. 
• Monitor and the metadata 

• Synchronization. 
• Races between hooks and monitor 

• Compatibility. 
• OS and hardware 
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Out-of-the-VM Architecture 
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Hybrid VM monitoring Architecture 
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(NDSS submission - accepted) 



Now, Kernel Cruising 

• How to gather canary location info?  
 

• How to deal with the races between hooks and 
monitor?    
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Kernel Cruising 

• Page Identity Array (PIA) 
• Heap buffer canary location information 
• Other information 

 
• Race conditions 

• Concurrent updates by two hooks 
• Inconsistent reads by monitor  
• Time of check to time of use (TOCTTOU) 
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Semi-synchronized Non-blocking 
Cruising Algorithm 

• Avoid Concurrent Entry Updates. 
• Put the PIA entry update operations into the 

critical section. 
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Resolve TOCTTOU 

Hook: 
if the page is moved to the heap page pool 
 flag = true; 
else if the page is removed from the heap 
 flag = false; 
Monitor: 
if (the canary is tempered) { 
     if (flag == true) { // the page is still in heap 
             report overflow! 
     } 
} 
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true->false->true 
A        B         A 



ABA Hazard Solution 

if the page is moved to the heap page pool 
 version++; 
else if the page is removed from the heap 
 version++; 
… 
if (the canary is tampered) { 
     if (version == original version) { 
             report overflow! 
     } 
} 14 



Secure Canary Generation 

• R1) The canaries are not predictable. 
 

• R2) The canary generation and verification 
algorithms should be efficient. 
 

• Generate unpredictable canaries using 
RC4 from a per-virtual-page random value. 
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Outline 

• Idea 
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• Related Work 
• Summary 
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Effectiveness 

• We exploited five heap buffer overflow 
vulnerabilities in Linux, including three 
synthetic bugs and two real world 
vulnerabilities .  
 

• All the overflows are successfully detected 
by Kruiser. 
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Performance Overhead 
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SPEC CPU2006 performance (normalized to the execution time of original Linux). 



Scalability 
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Throughput of the Apache web server for varying numbers of concurrent requests. 



Detection Latency 
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Different cruising cycle for different applications in the SPEC CPU2006 benchmark 

10 of 12 applications have less than  
29ms  (for scanning the kernel heap). 
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Related Work 

• Countermeasures Against Buffer Overflows 
• StackGuard [USENIX Security '98] 
• Heap Integrity Detection [LISA '03] 
• Cruiser [PLDI '11] 
• DieHard [PLDI '06] and DieHarder [CCS '10] 

• VM-based Methods 
• SIM [CCS '09] 
• OSck [ASPLOS '11] 
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Summary 

• Kruiser can achieve concurrent monitoring  
against kernel heap buffer overflows. 
• Non-blocking 
• Semi-synchronized 
• NO false positive 

 
• The hybrid VM monitoring scheme 

provides high efficiency without sacrificing 
the security guarantees. 
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Thank you! 
 

Questions? 
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Non-blocking Cruising Algorithm 
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Avoid Read 
Inconsistency! 

Is the page still 
used by the heap? 

Monitor(){
uint ver1, ver2;
for (int page = 0; page < ENTRY NUMBER; page++){

ver1 = PIA[page].version;
if (The page is non-heap page)

continue; // Bypass non−heap page
Read the metadata stored in PIA[page];
ver2 = PIA[page].version;
if (ver1 != ver2)

continue; // Metadata was updated 
for (each canary within the page){

if (the canary is tampered){
DoubleCheckOnTamper(page, ver1);

}
}

}
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