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Abstract—In a coalition network where database servers of
multiple parties are linked to facilitate information sharing, a
data owner usually wants to authorize different portions of
its information, in an antonomous way, to be accessible by
different peer parties; consequently, each party has a distinct
authorized view over the data stored in the coalition network.
The requirements, however, impose new challenges on safe query
evaluation, because query planning has to resolve the view
discrepancy between parties due to the independently defined
authorizations, ensuring each server does not receive data it
is not authorized to see, and meanwhile guarantees correct
query results. We present an algorithm that, given a set of
authorizations and a query plan, generates a safe execution strat-
egy. The algorithm enables per-party access authorization and
autonomous access control. Following the principle of efficient
distributed computation, it explicitly supports distributed query
evaluation. A new join method, named split-join, is proposed,
significantly reducing the inter-server data transmission cost by
pushing the join computation as close as to the data sources.
The proofs of the correctness and safety of the algorithm are
presented. The performance evaluation result is reported.

I. INTRODUCTION

Emerging scenarios for collaborative missions in various
areas require different organizations to exchange information
by means of sharing data in a large distributed system. Such
scenarios range from multinational military tasks; to inter-
national scientific cooperation; to ad hoc coalition formation
for humanitarian emergency operations. A recent example is
that a coalition network infrastructure in Afghanistan, which
links US troops and their counterparts from several allied
nations, has fundamentally changed the way the multinational
efforts have been conducted over the past several years. As
information is flowed outside party boundaries, the need for
data protection is as strong as data exchange.

In this work, we consider a coalition network linking
relational databases of several parties.1 In particular, through a
research project jointly sponsored by the US Army and the UK
DoD, we have collected a set of principal data protection needs
of a multinational military mission in Afghanistan. Based on
these protection needs, we conclude the following three access
control requirements, which we believe are common for non-
military coalition networks as well. (1) Per-party authorization
profile (R1): in a collaboration involving multiple parties,
various bilateral relations are maintained between parties.
Hence, for example, the fact that party A discloses some

1We focus on relational databases, which should not be considered as a
limitation, as the relational model is the de facto standard used by virtually
all mainstream database systems.

specific data to party B does not imply that A feels necessary
or comfortable to share it with party C. A party should be able
to authorize access to different portions of its data to different
peer parties, as a result each party has a distinct view over
the data set stored in the coalition network. (2) Authorization
autonomy (R2): each party should have full and autonomous
control over the authorization definition in terms of its data.
It is usually impractical to assume a centralized entity (e.g., a
supervisor) defining authorizations on behalf of all parties. It is
also inflexible and inefficient to require multiple parties reach
consensus before an authorization modification can be made.
(3) Fine-granularity access control over tuples (R3): access
control over the data stored in a table has two dimensions:
columns (attributes) and rows (tuples), corresponding to the
vertical and horizontal perspectives, respectively. While regu-
lating the accessibility of attributes (vertical access control) is
important in some scenarios, the ability to control the access to
any given tuple (horizontal access control) is needed in most
cases.

Although many authorization models and enforcement
mechanisms have been proposed in the literature, none has ad-
dressed R1–R3 simultaneously in a coalition network. Classic
distributed database systems assume a single organization [1],
[6], [14], [16], [20]. They do not consider inter-party access
control at all. Federated databases usually define authorizations
in terms of roles [5], [12], [15], [18], [19]. Users with the same
role, even if they are from different parties, have identical
access privileges. This violates R1. In addition, they usually
assume a centralized entity who defines the authorizations, so
R2 is not satisfied either. The work by Sabrina et al. [8]–[10]
defines an authorized view for each party, which starts to re-
alize R1; however, they deal with the accessibility of columns
rather than tuples (R3). Due to the orthogonal purposes, their
model cannot be applied to solving our problem. Besides,
in their model, authorizations regulating the join operations
between relations belonging to multiple parties are supposed
to be defined by these parties collaboratively, which does not
meet R2.

We propose to adopt a simple, yet expressive, authorization
specification, named the pairwise authorization, to address the
access control requirements R1–R3, and we present a query
planning algorithm enforcing such authorizations in coalition
networks. Each pairwise authorization involves two parties:
the data provider (i.e., the data owner) and the consumer. The
data provider defines authorizations describing which tuples
owned by the provider are authorized to be accessible by the



consumer. This type of authorization specifications is not new;
it essentially corresponds to a generic view definition, thus
it is straightforward to be seamlessly integrated into current
database systems.

While pairwise authorizations define a distinct authorized
view for each party, our algorithm, given a query, generates a
safe query execution plan that ensures the query computation
exposes to each party only data that the party is authorized
to see. An important feature of the algorithm is its explicit
support for the collaborated query computation. Instead of
simply drawing all the base tables involved in a given query to
some server to complete the query computation, the algorithm
explores possibilities to execute the computation near the data
sources, which is a principle for efficient query processing
in a distributed setting. To simultaneously achieve two goals,
namely (1) push query computation as close as possible to
the data sources, and (2) keep compliant with pairwise autho-
rizations, a new join method, named split-join, is designed.
It exploits the overlapped authorized view between the join
participants, significantly reducing the data transmission cost,
while correctly dealing with the possible view discrepancy
caused by the per-party authorized view. Leveraging the fact
that servers belonging to the same party, named buddy servers,
share the same authorized view, we involve buddy servers as
third participants in join planning to further reduce query eval-
uation cost. Besides, a significant property of our algorithm is
that the generated query execution plan preserves authorization
confidentiality. That is, each server involved in the query
computation only refers to its owner party’s authorizations
to execute the plan; therefore, the privacy how each party
defines the authorizations is protected. We proved the cor-
rectness, safety, and authorization confidentiality property of
the proposed algorithm.2 The experiments show that the query
plan generated by our algorithm saves the communication cost
by 60%.

The remainder of the paper is organized as follows. Sec-
tion II introduces the database system over a coalition network.
Section III introduces pairwise authorizations and safe query
processing. Section IV presents different join methods includ-
ing the novel split-join. Section V illustrates the query plan
generation algorithm, and Section VI discusses its correctness,
safety. Section VII presents a performance evaluation of the
algorithm. Section VIII and IX discuss related work and
conclusions, respectively.

II. QUERIES IN A COALITION NETWORK

We consider a coalition network which links a set of
database servers N = {S1, . . . , Sn} belonging to different
parties. Each server contains one or more relations involved in
the information sharing in the coalition network. An overlay
network G(N,E) is constructed among the server in N , and
E is the set of links between the servers. li,j represents the
cost of transmitting a unit data over the link between Si and
Sj . We assume li,j = lj,i and the link cost is non-negative.
The cost of transmitting a unit data along the path between
two servers Si and Sj is denoted as pi,j , which is the sum of

2The proof is omitted in this paper due to space limitations.
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Fig. 1. A coalition network for a disaster recovery mission.

the costs of individual links along the path. The shortest path
is always adopted when transmitting data between servers. We
assume that, to protect data confidentiality, data transmission is
encrypted using the session key, which is unique for each pair
of parties, so that when Si sends data to Sj via Sk, Sk cannot
reveal the data that has been encrypted using the session key
only shared between Si and Sj . Different from conventional
distributed database systems, the servers in N do not belong
to a single party but a number of parties V1, . . . , Vm. Each
server belongs to one and only one party. The party that server
S belongs to is denoted as P (S). If two servers belong to
the same party, they are buddies of each other; otherwise,
foreigners. A buddy+ of server S refers to a buddy server
of S or S itself.

Example 2.1: Figure 1 represents a coalition network con-
structed for a disaster recovery involving multiple parties. The
mission takes place in a large area, which has been divided into
smaller districts as marked by the dashed lines. The numbers
indicate the link costs. The bold lines mark the shortest path
tree rooted at Sq . The coalition network involves five parties
and six servers: V1 = {S1}, V2 = {S2}, V3 = {S3}, V4 =
{S4}, V 5 = {S5, Sq}. S5 and Sq are called buddies. Party
V1 is responsible for constructing safe houses, such as camps
and shelters; a table named Safehouse describing the types
and locations of the safe houses is stored at S1. Party V2,
a contractor company providing various services including
disinfection, air conditioning and transportation; information
about employee duties and working districts is recorded at
the table Service, which is stored at S2. Party V3 deploys
and manages the communication infrastructure, for example,
base stations for local area or satellite communication; a table
named Communication is stored at server S3. The attributes
and keys of the tables are as shown in Figure 1.

Parties in the coalition network share information by con-
tributing and querying data. We consider simple yet typical
queries of the form “SELECT-FROM-WHERE”. Given a
query, the query optimizer compares the possible query plans
to determine the most efficient query strategy. A query plan
can be represented as a query tree, where intermediate results
flow from the bottom of the tree to the top during query
execution. The leaves of a query tree represents base relations
accessed by the query, while each non-leaf node represents
a relation obtained by applying one relational operator to its
child nodes. A query tree may have different execution plans.
The reason is that, given the operator in an non-leaf node,



the locations where the computation is conducted and the
execution algorithms lead to a lot of possibilities. we call a
query tree whose non-leaf nodes contain the query operators
but lack concrete query execution information a preliminary
query tree, while a query tree that contains complete infor-
mation for the query evaluation including the operator, the
concrete method and the involved servers for each non-leaf
node a complete query tree. How to enumerate the possible
preliminary query trees for a given query has been extensively
researched [13], [17], while our work is, given a preliminary
tree, to generate a complete query tree which is compliant with
the authorizations.

Query 1:
SELECT district, safehouseID, type, employeeID, stationID

FROM Safehouse, Service, Communication
WHERE service.Service=‘‘Disinfection’’ and

Communication.function = ‘‘Satellite’’ and
Safehouse.district = Service.district and
Service.district = Communication.district

Fig. 2. Query.

Example 2.2: Figure 2 shows a query, Query 1, issued by
server Sq belonging to party V5, which is responsible for
medical assistance. The query searches locations suitable for
performing surgeries needing remote expert diagnosis, which
means finding the districts that have disinfection services, safe
houses, and satellite communication infrastructure.

Figure 3 (a) shows a preliminary query tree for Query
1. Nodes (n2, n5, n6) contain operations filtering out tuples
inaccessible by servers of V5 according to the authorizations
(Section III-A). The selection operations in n3, n4 are executed
before joins to eliminate unnecessary tuples early. All nodes
except n0, n1 specify a server, named the consolidator, indi-
cating the location where the tables represented by the nodes
are obtained. We assign alias names A,B,C,D for tables
represented by n2, n3, n4, n1, respectively, so n1 represents
A ./ B and n0 (A ./ B) ./ C, which we also use to represent
Query 1. Note that we cannot assign n1’s consolidator as, for
example, S1, because it may be not safe to allow S1 to see
A ./ B. The complete query tree in Figure 2 (b), which is
obtained based on the preliminary query tree in Figure 2 (a),
shows a safe query plan. We will interpret it after introducing
the query planning algorithm (Section V).

III. AUTHORIZATIONS AND SAFE QUERY PLANNING

A. Pairwise Authorizations

In a collaboration, many types of alliances may be formed
by parties, and what information can be shared between parties
may depend on the type of alliance they are involved in.
Thus, the need for discriminative information sharing can
be common and critical in many multi-party collaborations.
A simple, yet expressive, authorization specification, named
pairwise authorizations, can be used to meet such access
control requirements in collaborations.

Definition 3.1: An pairwise authorization is a rule of the

form Vi
Q{R}−−−→ Vj , where:

(1) Q{R} describes a subset of the tuples in table R.
(2) A server of party Vi owns R and defines this rule.

(3) Vj is the party of the data consumer.
The semantics of an authorization is that the server that

owns R authorizes the servers of Vj to access the set of
tuples described by Q{R}. Note how the simple authorization
specification satisfies the data protection requirements. First,
the data owner can define a different accessible tuple set
per peer party; the authorized view of a given party (see
Definition 3.2) is equal to the union of the views specified
by the authorization whose data consumer is the party (R1).
Second, it is the data owner who defines the authorizations
releasing the access to its data (R2). Third, the specification
has fine-granularity control over the visibility of any given
tuple (R3).

The form of Q{R} is not specified. In practice, it can be a
simple query describing a subset of tuples in R:

SELECT * FROM R WHERE constraint,
where constraint is a disjunction and/or conjunction of literals
in the form of Ai op value where Ai is an attribute of R,
op ∈ {<,>,=, 6=} and value ∈ dom(Ai).

This kind of tuple-set-based access release is not new. It
essentially corresponds to a generic view definition, thus it
is simple enough to be seamlessly integrated into existing
database systems. Note that we do not consider multilevel
security concepts [14], which we regard as an orthogonal issue
of horizontal access control.

B. Safe Query Plan
Definition 3.2: Given a set of authorizations {A1, . . . ,An}

where the data consumer is party V , the authorized view of
V is Θ(V ) = {Q1, . . . , Qn, R1, . . . , Rm}, where Qi is the
tuple set specified in Ai, i = 1, . . . , n, and R1, . . . , Rm are
the relations owned by servers belong to party V .

The attributes of a relation R are denoted as attr(R). A
projection on R using a subset α of attr(R) is denoted as
R[α] or παR. A relation R′ is a subrelation of a relation
R if attr(R′) ⊆ attr(R) and R′ ⊆ R[attr(R′)] (a rela-
tion is viewed as a set of tuples). Given a set of relations
R = {R1, . . . , Rn}, the cross product of the relations in R is
denoted by ∆(R) = R1 × · · · ×Rn.

Definition 3.3: A given operation in a query is safe, iff for
all the steps due to the operation, each step is either executed
inside a server, or it sends a relation, R, to a server belonging
to party V and R is a subrelation of ∆(Θ(V )). A given query
plan, which consists of a sequence of operations, is safe iff all
its operations are safe.

Definition 3.3 is worth more explanation. Any data trans-
mission due to a safe query plan should only expose infor-
mation that the receiver is authorized to view. However, the
information carried in an intermediate result may be more than
it appears. For example the query plan πattr(R1)(R1 ./ R2)
executes the join between R1 and R2, then applies a projection
preserving only R1’s attributes. Although the result only
contains a subset of tuples in R1, it contains the information
that R2 has at least the tuples with the attributes satisfying the
join conditions. We assume the query intention is protected in
a way that, for any given query plan, each involved server
gets only the slice of the plan that guides the server to
collaborate the query evaluation; therefore, without exposing
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the corresponding query intention, a set of tuples received from
a remote server does not leak more information than the tuples
themselves. In this example, the server that receives the result
of πattr(R1)(R1 ./ R2) cannot distinguish whether they were
the result of “projection after join”, “select in R1” or other
queries. Therefore, we consider a data transmission operation
to be safe if the transmitted relation is a subrelation of the cross
product of the relations the receiver is authorized to view.

IV. JOIN METHODS

While a query operation with a unitary operator, e.g.,
selection and projection, is executed inside a server and is
thus safe by definition, a join operation may involve inter-
party data transmission. Hence, our interest is to look at
and compare different join methods to determine a safe and
efficient execution strategy. In this section, we first describe
two straightforward join methods, named peer-join and broker-
join,3 then present a novel join method, named split-join. In
all the three join methods, we explore the possibilities of
adopting buddy servers to achieve efficient join evaluation.
As communication cost is a most important performance
metric in a distributed system, our optimization target is the
communication cost during the query evaluation. The size of a
relation is denoted as |R| and, if we ignore the cost of initiating
a data transmission, the cost of sending R from Si to Sj is
pi,j ∗|R|. The cost of a query plan is thus the sum of the costs
of all its operations.

We consider the equi-join operation contained in n1 of
Figure 3, which joins the two tables A and B represented by
the child nodes n2 and n3, respectively. Sq is the query issuer,
while A and B reside in S1 and S2. respectively. We consider
various party relationships of the servers (instead of sticking
to the party memberships described in Figure 1), showing
the conditions under which the join methods can be applied.
In each join method, there is a parameter, the consolidator,
indicating the server that obtains (consolidates) the join result.

A. Peer-join and Broker-join
If S1 and S2 are buddies, a standard semi-join can be

applied [4]. One viable sequence of the steps as shown in

3We describe these join methods briefly for the sake of completeness;
readers with the background of distributed query processing can jump to
Section IV-B.

Figure 4 (a) is (1) S1 sends A[district] to S2; (2) S2 computes
A[district] ./ B and sends it to S1. S1 computes A ./
(A[district] ./ B) to get the final join result. The consolidator
here is S1. Note how steps (1) and (2) help determine tuples in
B needed for the join, such that the resultant data transmission
can be dramatically reduced compared to simply sending B
to S1. Since semi-join has been extensively researched in the
area of distributed query processing, we refer the readers to
the literature [4]. We turn to consider the conditions where S1

and S2 do not belong to the same party.
If S2 and Sq are buddies while S1 and Sq are not, a

straightforward join method, named peer-join, is to send A to
S2, which computes A ./ B as the consolidator. It leverages
the fact that buddy servers (S2 and Sq) share the same
authorized view, so the data transmission is safe. Figure 4 (b)
shows an application of the peer-join.4

Another join method, named broker-join, involves the steps
that S1 and S2 send A and B to the Sq , respectively, which
then completes the join computation. Here, the consolidator is
Sq . It can be generalized by allowing any buddy server of Sq
to be the consolidator, such that we can exploit buddy servers
of Sq that may scatter in the network and choose one near S1

and S2 as the consolidator to reduce the data transmission cost.
For example, assume Sb is a buddy of Sq close to S1 and S2,
the broker-join is executed as shown in Figure 4 (c). Compared
to sending the tables to the query issuer Sq , it computes the
result as close as to the data sources, which is a principal
optimization in distributed computation. This method can be
applied under any party relationship condition.

When both peer-join and broker-join are applicable, no
method is better than the other in general conditions.

B. Split-join
We propose a new join method, named split-join, which

can be applied when S1, S2 and Sq belong to three different
parties. It explores the commonly accessible tuple sets to do
partial computation near the data sources, and do the rest
computation at Sq . The method splits tuples of a relation into
two sets: tuples that can be commonly accessed by the servers
involved in the join are in one set, while the remaining tuples

4Similarly, if S1 and Sq are buddies while S2 and Sq are not, S2 sends
B to S1 (the consolidator) to apply the peer-join.
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are in the other one. Specifically, we assume server S1 is
allowed to access tuple set B1 of B, and B2 = B − B1(,
i.e. B2 = {x|x ∈ B ∧ x /∈ B1}); server S2 is allowed to
access tuple set A1 of A, and A2 = A − A1, thus B1 (A1

resp.) can be safely sent to S1 (S2 resp.) So the join can be
rewritten as

A ./ B = (A ./ B1) ∪ (A1 ./ B2) ∪ (A2 ./ B2).
As in broker-join, a buddy+ of Sq can be chosen to participate
in the computation on behalf of Sq . Assume, for example, Sb,
a buddy of Sq , is chosen. As shown in Figure 4 (d), a split-join
is actually composed of two peer-joins (steps (1) and (2)) and
one broker join (steps (3) and (4)). Each of the three joins is
called a sub-join. The three sub-join results are unioned at Sb
(the consolidator) to get the join result (steps (5) and (6)).

To illustrate the potential cost benefit of the split-join
method, we compare the cost of broker-join and split-join
methods.

cost(A ./broker−join B) =p1,b ∗ |A|+ p2,b ∗ |B|
cost(A ./split−join B) =p1,2 ∗ (|A1|+ |A2|)+

p1,b ∗ (|A2|+ |A ./ B1|)+
p2,b ∗ (|B2|+ |A1 ./ B2|)

Both the path costs and relation sizes may affect the compari-
son result. Nevertheless, it can be shown that in some specific
conditions, one method should be preferred over the other.
For example, if p1,2 << p1,b = p2,b, |A ./ B1| < |B1|, and
|A1 ./ B2| < |A1|, then

cost(A ./split−join B)
.= p1,b ∗ (|A2|+ |A ./ B1|+ |B2|+ |A1 ./ B2|)
< p1,b ∗ (|A2|+ |B1|+ |B2|+ |A1|)
= p1,b ∗ (|A|+ |B|) = cost(A ./broker−join B)

That is, in this situation, the split-join method is cheaper.
Similarly, we can prove that if |A ./ B1| ≥ |B1|, and
|A1 ./ B2| ≥ |A1|, the broker-join leads to less cost.

A join can be split in two ways:
(1) A ./ B = (A ./ B1) ∪ (A1 ./ B2) ∪ (A2 ./ B2).
(2) A ./ B = (A1 ./ B) ∪ (A2 ./ B1) ∪ (A2 ./ B2).

To distinguish the two, we use another parameter, master:
when the master is S1 (S2, resp.), split 1 (2, resp.) is adopted.
For example, the split-join shown in Figure 4 (d) adopts split
1 (and the master is S1). We have proved that If p1,b < p2,b,
the communication cost of split 1 is less (S1 should be chosen
as the master); otherwise, S2 should be the master. The proof
is omitted.

The four join methods can be represented in a uniform form:
join-method{the consolidator, the master} , where the master
is only applicable to the split-join. For example, the four
join methods shown in Figure 4 can be represented as semi-
join{S1, null}, peer-join{S2, null}, broker-join{Sb, null} and
split-join{Sb, S1}, respectively. Based on the definition of the
four join methods, it is easy to see that in each step a server
only receives data it is authorized to see; therefore, the join
methods are safe.

V. QUERY PLAN GENERATION

We present an algorithm that, given a set of pairwise autho-
rizations and a preliminary query tree, generates a complete
query tree consistent with the authorizations. Different join
methods are considered and all viable strategies are compared
to determine the final query tree. Since selections, projections
and operations filtering tuples according to authorizations are
executed inside servers, we ignore them in the algorithm and
focus on joins.

Listing 1. Structures for query plan generation
1 struct Node{
2 string server, relation; // Only used for leaf nodes
3 string Operator; // Selection, projection, and join etc.
4 Node ∗left, ∗right; // Pointers to child nodes
5 Candidate ∗cand list, ∗ final cand;
6 };
7
8 struct Candidate{
9 Node ∗ node; // The tree node that this candidate belongs to

10 Candidate ∗lcand, ∗rcand; // Child candidates in
consideration

11 int method; // One of the four join methods
12 string consolidator, master; // Parameters for the join method
13 int cost; // Cost of executing the sub−tree rooted at this node



14 };

We first introduce the main structures Node and Candidate
in Listing 1. The Node structure is used to represent the nodes
in the query tree, while each Candidate instance is a join
strategy, comprising the join method and the parameters, for
generating the relation represented by the containing node. The
cand list field in the Node structure contain all candidates for
the node. Other fields are explained in the comments.

Listing 2. Algorithm for query plan generation
15 // Input: Query issuer Sq, overlay network G(N, E), preliminary

query tree T, and database profile;
16 // Output: A complete query plan and the estimated cost;
17 GeneratePlan(){
18 InitializeLeafNodes(root); // Argument is the root node
19 SearchCandidate(root);
20 cand = the Candidate in root−>cand list with the least cost;
21 TraceBack(cand);
22 }
23
24 SearchCandidates(node){
25 if(node is leaf) return;
26 l = node−>left; r = node−>right;
27 if( l != null) SearchCandidate(l);
28 if( r != null) SearchCandidate(r);
29 for(each candidate lcand in l−>cand list)
30 for(each candidate rcand in r−>cand list)
31 ExamineJoinOptions(node, lcand, rcand);
32 }
33
34 AddCand(node, lcand, rcand, method, consolidator, master){
35 cost = lcand−>cost + rcand−>cost + current join cost;
36 insert Candidate(node, lcand, rcand, method, consolidator,

master, cost) into node−>cand list;
37 }
38
39 ExamineJoinOptions(node, lcand, rcand){
40 lserver = lcand−>consolidator;
41 rserver = rcand−>consolidator;
42
43 // Intra−server join
44 if(lserver = rserver){
45 Choose an intra−server join method, e.g., sort−merge;
46 AddCand(node, lcand, rcand, sort−merge, consolidator,

null);
47 return;
48 }
49 // semi−join. Recall that P(S) returns the party S belongs to.
50 if(P(lserver) = P(rserver)){
51 Determine the consolidator; // The details are omitted.
52 AddCand(node, lcand, rcand, semi−join, consolidator, null

);
53 return; // Assume semi−join is superior to other joins.
54 }
55 // broker−join
56 for (each server S in N)
57 if(S != lserver and S != rserver)
58 if(P(S) = P(Sq))
59 AddCand(node, lcand, rcand, broker−join, S, null);
60 // peer−join
61 if(P(lserver) = P(Sq))
62 AddCand(node, lcand, rcand, peer−join, lserver, null);
63 else if(P(rserver) = P(Sq))
64 AddCand(node, lcand, rcand, peer−join, rserver, null);
65 // split−join
66 else
67 for(each server S in N)

68 if(P(S) = P(Sq))
69 if(path cost(lserver, S) < path cost(rserver, S))
70 AddCand(node, lcand, rcand, broker−join, S,

lserver);
71 else
72 AddCand(node, lcand, rcand, broker−join, S,

rserver);
73 }
74
75 TraceBack(cand){
76 if(!cand) return;
77 cand−>node−>cand final = cand;
78 TraceBack(cand−>lcand);
79 TraceBack(cand−>rcand);
80 }

The algorithm in Listing 2 takes the preliminary query tree
along with the overlay network topology, authorization policies
and the database profile as the input, and generates a complete
query tree compliant with the authorizations. The generation of
a query plan consists of three phases. (1) Initialize the query
tree (Line 18; the code for InitializeLeafNodes is omitted):
add a Candidate instance for each leaf node (node = the
node, lcand = rcand = method = null, consolidator = the
server storing the base table represented by the node, master =
null, cost = zero). (2) Accumulate query strategies (Line 19):
SearchCandidates walks the tree in a post-order and collects
feasible join options into cand list. The servers containing the
relations to be joined are critical when considering which join
methods are applicable. So it enumerates the combination of
the candidates in the child nodes to collect join candidates
for current node (Line 29–31). (3) Trace back from the
candidate stored at the root node with the minimum cost,
which represents the total cost of the plan, to determine the
join strategy for each other node (Line 21).

Example 5.1: A preliminary query tree is shown in Fig-
ure 3 (a); the topology and the party membership are depicted
in Figure 1. A ./ B at n1 can apply either broker-join or
split-join; the consolidator can be Sq or S5 in either case.
Therefore, n1 has four candidates: split-join{Sq , S2} (split 2
is adopted because p2,q < p1,q), broker-join{Sq , null}, split-
join{S5, S2}, and broker-join{S5, null}. As the former (latter
resp.) two candidates both obtain A ./ B at Sq (S5 resp.),
an optimization is to compare the cost of the two and keep
the better one. Next, when collecting candidates for the root
node n0, its right child node n4 contains only one candidate,
while each of the candidates in the left child node n1 is
enumerated. For example, when the candidate split-join{S5,
S2} of n1 is enumerated, the peer-join that sends C to S5

and the broker-join that sends both A ./ B and C to Sq are
inserted into the candidate list of n0. By comparing the total
costs of the candidate query plans, the most efficient one is
chosen. Figure 3 (b) shows a safe complete query tree which
applies split-join{S5, S2} to n1 and peer-join{S5, null} to n4.

VI. CORRECTNESS, SAFETY AND AUTHORIZATION
CONFIDENTIALITY

Definition 6.1: Given a preliminary query tree T , its ref-
erence complete query tree is generated by transforming the
nodes of T : (1) for each leaf node n in T , a data transmission



operation sending the relation represented by n to the query
issuer is added to n; (2) for each non leaf node with a
unitary operator, it remains the same except for the operation
is executed in the query issuer; (3) for each non leaf node with
a join operator, an intra-server join method (e.g., sort-merge)
is adopted.

The query plan represented by a reference complete query
tree sends all the base relations involved in the query to the
query issuer, which then performs a local query computation.
Note that we do not consider the safety issue due to the data
transmission in the reference tree.

Definition 6.2: Let T be a preliminary query tree. T speci-
fies a set R of base tables in its leaf nodes. A complete query
tree of T is correct if, given any tuple instances contained in R,
it always computes the same query result as that is computed
by the reference complete query tree of T .

Theorem 6.1: Given a preliminary query tree T , a set of
authorizations, the complete query tree T1 generated by the
algorithm (Listing 2) is correct and safe.

Definition 6.3: Given a query operation, if each server
involved in the execution only needs the content of the
authorizations defined by itself or its buddies, the operation
satisfies authorization confidentiality. A query plan satisfies
authorization confidentiality, if all its operations satisfy autho-
rization confidentiality.

Theorem 6.2: Given a preliminary query tree, a set of
authorizations, the complete query tree T generated by the
algorithm (Listing 2) satisfies authorization confidentiality.

The proof of Theorem 6.1 and 6.2 is omitted due to space
limitations.

VII. EXPERIMENTS

We evaluated the performance of the query planning algo-
rithm described in Listing 2, and particularly measured how
buddy servers and split-joins can be exploited to save the
communication cost.

We implemented the algorithm in Python and simulated
the topology shown in Figure 1. We considered the query,
(A ./ B) ./ C, issued by Sq , described in the end of
Section II. Specifically, A, B and C are stored in S1, S2 and
S3, respectively, and all their tuples are accessibly by Sq . We
assumed |A| = |B| = |C|. We measured the communication
costs of the query plans generated by the algorithm under four
setting cases (Table I). We ran the experiments 100 times for
each case and each of the five different values of table sizes
varying from 10 to 100k, and the average communication costs
are reported. The size of each join result in each running was
a random value uniformly distributed between zero and the
average size of the two tables involved in the join operation.
That is, |T1 ./ T2| follows µ(0, (|T1| + |T2|)/2). The results
are shown in Table II.

TABLE I
SETTINGS CASES.

Case Setting
Case 1 Centralized evaluation.
Case 2 Sq , S5 are buddies; foreigners do not share the views.
Case 3 Sq , S5 are not buddiess; foreigners share part of the views.
Case 4 Sq , S5 are buddies; foreigners share part of the views.

Case 1 enforces a centralized evaluation where A, B and C
are sent to Sq to complete the query computation. The central-
ized query evaluation is widely used in federated databases [5],
[12], [15], [18], [19], thus we regard its communication costs
as the baseline.

Case 2 is to exploit buddy servers. As servers of different
parties do not share the authorized views, 5 a broker-join is
preferred for the first join. The algorithm generates the query
plan (A ./broker−join{S5,null} B) ./peer−join{S5,null}. That
is, for the first join, S1 and S2 send the tables to S5, as opposed
to Sq in Case1, to enforce a broker-join. In the second join, a
peer-join where S3 sends C to S5 is applied. In both joins, the
operations are executed near the data sources, largely saving
the communication cost (42% on average).

Case 3 is to demonstrate the advantage of the split-join
method. Each server belongs to a different party. However, the
authorized views of different parties overlap. In each running
the size of the shared view is a random value between zero
and the table size, such that the split-join method as well as
other join methods is considered when generating the query
plan. Note that the consolidator in the split-join has to be Sq .
It saves the communication cost by 39% on average.

Case 4 illustrates the combined benefits of exploiting buddy
servers and the split-join method. S5 and Sq are buddies and
the size of the shared view is again a random value uniformly
distributed between zero and the table size for each running.
For the first join no matter the broker-join or the split-join
is applied, the consolidator is S5. The second-join applies the
peer-join and sends C to S5. The computation has been pushed
towards the data sources as much as possible. The experiment
results show that the combination of buddy servers and the
split-join method improves the communication cost by 60%
compared to the baseline (Case 1) under various table sizes.

TABLE II
COMMUNICATION COSTS OF DIFFERENT SCENARIOS.
Table size Case 1 Case 2 Case 3 Case 4
10 2.45e3 1.43e3 1.51e3 1.1e3
100 2.45e4 1.40e4 1.58e4 9.4e3
1k 2.45e5 1.38e5 1.42e5 9.6e4
10k 2.45e6 1.42e6 1.43e6 9.9e5
100k 2.45e7 1.41e7 1.47e7 9.3e6

VIII. RELATED WORK

In conventional distributed database systems, it is common
to grant access by defining different authorized views for
different users or roles [1], [6], [14], [16], [20]. In such
systems, however, servers belong to a single organization.
Thus they do not consider inter-party information flows.

Safe query execution for federated database systems has
been extensively researched. Most of them define autho-
rizations in terms of roles and perform centralized query
evaluation [5], [12], [15], [18], [19]. Some focus on resolving
inconsistencies when merging security specifications from
multiple independent data sources with the goal of establishing
a common security policy set for regulating the federated
system [7], [11]. Authorizations defined in our work do not

5It implies that |A1| and |B1| in the split-join are both zero.



need conflict resolution, as each of them is defined in terms of
local resources of the authorization definer. Some works [8]–
[10] start to explore per-party authorization profile. However,
they investigate vertical access control, specifying how each
attribute in relations can be accessed directly or referred to for
join connection purposes directly. Their work complements the
horizontal access control presented in this paper.

Sovereign joins [2], [3] enhance privacy and confidentiality
by allowing queries to be computed without revealing source
data other than the query result. The algorithms usually incur
a high computational and communication cost due to the goal
avoiding data leakage and information inference.

IX. CONCLUSIONS

In multiple-party collaborations, information leakage during
sharing is a realistic concern. How to share information safely
and flexibly is a common and important problem in many
coalition scenarios. We formalized the problem in federated
databases and presented a simple but effective solution to en-
forcing horizontal access control. It allows each party to share
the information selectively and discriminatively, as a party
can define an arbitrary set of accessible tuples per peer party
independently. We have shown that our algorithm generates
correct and safe query plans, protecting the confidentiality
of both information and access control policies. The initial
experiments show the advantage of the algorithm in largely
saving communication cost. More experiments will be per-
formed to further evaluate it. In short, the solution provides an
effective access control measure for safe information sharing
in federated databases with high communication efficiency,
which is a critical criterion for wireless mobile and wide-area
networks.
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