
1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 1

Enforcement of Autonomous Authorizations in
Collaborative Distributed Query Evaluation

Qiang Zeng, Member, IEEE, Mingyi Zhao, Peng Liu, Member, IEEE, Poonam Yadav, Member, IEEE,
Seraphin Calo, Senior Member, IEEE, and Jorge Lobo, Member, IEEE

Abstract—In a federated database system, each independent party exports some of its data for information sharing. The information
sharing in such a system is very inflexible, as all peer parties access the same set of data exported by a party, while the party may
want to authorize different peer parties to access different portions of its information. We propose a novel query evaluation scheme
that supports differentiated access control with decentralized query processing. A new efficient join method, named split-join, along
with other safe join methods is adopted in the query planning algorithm. The generated query execution reduces the communication
cost by pushing partial query computation to data sources in a safe way. The proofs of the correctness and safety of the algorithm are
presented. The evaluation demonstrates that the scheme significantly saves the communication cost in a variety of circumstances and
settings while enforcing autonomous and differentiated information sharing effectively.

Index Terms—Query processing, Security and Authorization, Distributed databases

F

1 INTRODUCTION

EMERGING scenarios for collaborative missions in
various areas require different organizations to ex-

change information in a large distributed system. Such
scenarios range from multinational military tasks; to
international scientific cooperation; to ad hoc coalition
formation for humanitarian emergency operations. A re-
cent example is that a coalition network infrastructure in
Afghanistan, which linked US troops and their counter-
parts from several allied nations, fundamentally changed
the way multinational efforts had been conducted [17].

As information is flowed outside party boundaries, the
need for data protection is as strong as data exchange. In
this paper, we consider information sharing among mul-
tiple parties through a distributed database system. We
focus on relational databases, which should not be con-
sidered as a limitation, as the relational model is the de
facto standard used by virtually all mainstream database
systems. In particular, through a research project jointly
sponsored by the US Army and the UK Ministry of De-
fense, we have gathered a set of principal data protection
needs during information sharing in a multinational mil-
itary mission in Afghanistan. Based on these needs, we
propose the following three access control requirements,
which we believe are common for information sharing

• Qiang Zeng is with the Department of Computer Science and Engineering,
Penn State University. E-mail: qzeng@cse.psu.edu.

• Mingyi Zhao and Peng Liu are with the College of Information Sciences
and Technology, Penn State University.
E-mail: {muz127, pliu}@ist.psu.edu.

• Poonam Yadav and Seraphin Calo are with IBM T. J. Watson Research
Center. E-mail: {yadavp, scalo}@us.ibm.com.

• Jorge Lobo is with ICREA-Universitat Pompeu Fabra.
E-mail: jorge.lobo@upf.edu.

A preliminary version of this work appeared in the 6th Annual Conference of
International Technology Alliance, Southampton, UK, September 2012 [23].

in non-military collaborations as well. (1) Per-party au-
thorized view (R1): in a collaboration involving multiple
parties, various bilateral relations between parties exist.
Hence, for example, the fact that party A discloses some
specific data to party B does not imply that A feels
necessary or safe to share it with party C. A party
should be able to authorize access to different portions
of its data to different peer parties, as a result each
party has its own view over the data set stored in the
coalition network. (2) Authorization autonomy (R2): each
party should have full and autonomous control over
the authorization definition. It is usually impractical to
assume a centralized entity (e.g., a supervisor) defining
authorizations. It is also inflexible to require multiple
parties reach consensus before an authorization modi-
fication can be made. (3) Fine-granularity access control
over tuples (R3): access control over the data stored in a
table has two dimensions: columns (attributes) and rows
(tuples), corresponding to a vertical perspective and a
horizontal one, respectively. While regulating the acces-
sibility of attributes (vertical access control) is important
in some scenarios, access control on tuples (horizontal
access control) is a general need in most cases. There
are many other requirements depending on practical
circumstances, but R1–R3 commonly exist in most multi-
party information sharing scenarios.

Although many authorization models and enforce-
ment mechanisms have been proposed in the litera-
ture, none supports such information sharing flexibil-
ity and capability as specified in R1–R3. Classic dis-
tributed database systems assume a single party/orga-
nization [4], [11], [13], [21]. They do not consider inter-
party access control at all. In a federated database system
each party exports information accessible to the whole
system [3], [9], [12], [18], [20]. Thus, all the parties share
the same data access, which does not satisfy R1.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 2

The first piece of work that targets differentiated
privacy control between parties in distributed query
processing is [5] (see also [6]); it enables a distinct
authorized view for each party, which starts to realize
R1. However, they deal with the accessibility of columns
rather than tuples. Due to the orthogonal perspectives,
their scheme cannot be applied to satisfying R3. Be-
sides, in their model authorizations that regulate the
joins among multiple parties are supposed to be defined
by these parties collaboratively, which does not meet
R2. One may propose to restrict the authorizations to
be defined within each party to meet R2; however, it
would significantly degrade the access control capability
provided by the original proposal. Further discussion
can be found in Section 9.

In order to address R1–R3 we propose to adopt a sim-
ple, yet expressive, authorization specification, named
pairwise authorization. A pairwise authorization involves
two parties: the data provider (i.e., the data owner) and
the consumer; it specifies a set of the data provider’s
tuples accessible to the consumer party. It is the data
provider that defines the authorization, so each party
has autonomous control of defining and modifying au-
thorizations in terms of its own data.

Due to pairwise authorizations, each party has a dis-
tinct view of the data shared by other parties, which
differs from the identical view among parties in a con-
ventional federated database system. The view disparity
among parties imposes new challenges on query evalu-
ation. A straightforward solution is to pull all the data
involved in a query to the querier, which then performs
the query computation. Although the centralized query
evaluation is safe, it usually leads to high communica-
tion costs.

We present a query planning algorithm that supports
pairwise authorizations. Given a query, the algorithm
generates a distributed query execution plan compliant
with the specified pairwise authorizations. Following
standard principles for query processing in distributed
databases it explores possibilities to evaluate partial
queries along the path the data travels from the data
repositories to the querier, with the enhancement that the
access control specified by the pairwise authorizations is
obeyed.

One of the challenges due to the differentiated per-
party access control is that the semi-join method [2], a
widely used join method in conventional distributed
database systems, is not generally applicable any more.
To simultaneously achieve two goals, namely (1) push
query computation as close as possible to data sources as
the semi-join does, and (2) keep compliant with pairwise
authorizations, a new join method, named split-join, is
designed. It preserves distributed query computation be-
tween data sources while correctly dealing with the view
disparity. The query planning algorithm adopts split-join
and other join methods for a safe and efficient query
evaluation. Multiple servers of the same party are called
buddy servers, which share the same authorized view.

The algorithm exploits the presence of buddy servers
by delegating partial queries to the buddy servers near
data sources or intermediate results to further reduce
communication cost.

A notable property of the algorithm is that it preserves
the confidentiality of authorizations. That is, during
query evaluation a server only refers to the authoriza-
tions defined by its own party; therefore, the privacy
how each party defines authorizations is protected.

We proved the correctness, safety, and authorization
confidentiality property of the proposed algorithm. A
general simulation platform is developed to experimen-
tally evaluate the algorithm. The experiments show that
the query planning algorithm reduces the communica-
tion cost by half or more on average under a variety
of settings and differentiated access control for multi-
party information sharing is achieved by enforcing au-
tonomous authorizations.

The remainder of the paper is organized as follows.
Section 2 describes the multi-party distributed database
system over a coalition network. Section 3 introduces
pairwise authorizations and safe query processing. Sec-
tion 4 presents various join methods including the novel
split-join. Section 5 illustrates the query plan genera-
tion algorithm, and Section 6 presents the proofs of its
correctness, safety and authorization confidentiality. Sec-
tion 7 presents the evaluation results. Section 8 discusses
replication and fragmentation. Section 9 and 10 discuss
related work and conclusions, respectively.

2 QUERIES IN A COALITION NETWORK

In this section, we describe the network constructed by
multiple database servers, introduce the query proce-
dure, and define query trees.

2.1 Coalition Network
We consider a coalition network which links a set of
database servers N = {S1, . . . , Sn} belonging to differ-
ent parties. An overlay network G(N,E) is constructed
among the servers in N , and E is the set of links between
the servers. li,j represents the cost of transmitting a
unit data over the link between Si and Sj . We assume
li,j = lj,i and the link cost is non-negative. The cost of
transmitting a unit of data along the path between two
servers Si and Sj is denoted as pi,j , which is the sum of
the costs of individual links along the path. The shortest-
path routing is adopted; that is, the shortest path is used
to transmit data between any two servers.

We assume that, to protect data confidentiality, data
transmission is encrypted. Each pair of parties share
a unique key. For example, when Si sends data to Sj
via Sk, Sk cannot decipher the passing traffic, for it is
encrypted using the key shared between Si and Sj .

Each server and all the base relations stored in the
server belong to one and only one party. Each relation is
stored in a single server (fragmentation and replication
are discussed in Section 8). The party that server S

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 3

S2

S1

S5

S3

Sq

S4

10

5010

85

90

30

15

S1: !"#$%&'($(safehouseID, type, district). S2: !$)*+,$(employeeID, service, district). S3: -&..'/+,"0+&/(stationID, function, district).
The underlined fields above are the table keys. Party membership: V1 = {S1}, V2 = {S2}, V3 = {S3}, V4 = {S4}, V5 = {S5, Sq}.
The numbers indicate the link costs. The bold lines mark the shortest path tree rooted at Sq.Fig. 1. A coalition network for a disaster recovery mission.

It takes place in a large area divided into smaller districts,
as marked by the dashed lines. The numbers indicate
the link costs. The bold lines mark the shortest-path tree
rooted at Sq; Sq communicates with other servers using
the shortest paths.

TABLE 1
Relations

Server Relation (Itatic attributes are the keys)
S1 Safehouse(safehouseID, type, district)
S2 Service(employeeID, service, district)
S3 Communication(stationID, function, district)

belongs to is denoted as P (S). If two servers belong to
the same party, they are buddies of each other; otherwise,
they are foreigners. A buddy+ of server S refers to a
buddy server of S or S itself. Therefore, buddies and
foreigners are used to describe the relationship of any
pair of servers in a coalition network.

Example 2.1: Figure 1 represents a coalition network
constructed for a disaster recovery mission involving
multiple parties. The coalition network involves five
parties, denoted as Vi, and six servers. P (S1) = V1,
P (S2) = V2, P (S3) = V3, P (S4) = V4, and P (S5) =
P (Sq) = V5 (that is, S5 and Sq are buddies). Specifically,
party V1 is responsible for constructing safe houses,
such as camps and shelters; a table named Safehouse
describing the types and locations of the safe houses is
stored at S1. Party V2, a contractor company providing
various services including disinfection, air conditioning
and transportation; information about employee duties
and working districts is recorded at the table Service,
which is stored at S2. Party V3 deploys and manages the
communication infrastructure, for example, base stations
for local area or satellite communication; a table named
Communication is stored at server S3. The attributes and
keys of the relations are listed in Table 1.

2.2 Query Procedure

Querier

Query planning server

Query planning algorithm

Servers
Query Query plan

Query result

Fig. 2. Query procedure.

Query 1:
SELECT district, safehouseID, type, employeeID,

stationID
FROM Safehouse, Service, Communication
WHERE Service.service=‘‘Disinfection’’ and

Communication.function = ‘‘Satellite’’ and
Safehouse.district = Service.district and
Service.district = Communication.district

Fig. 3. A query searching for surgery locations.

Figure 2 illustrates the query procedure. When a query
is received, the query planning server generates a query
plan and sends query plan slices to involved servers.
Note that we do not hide query intension from the
planning server [8], which is beyond the scope of this
paper, and the planning server is trusted not to conspire
with any party. Note that such a query planning server
is commonly used in a distributed database system [5],
[9], [18], [20], as the complexity of a distributed query
planning is too high [6]. The query is then executed
among the servers in a distributed way, and the final
result is sent to the querier. Query planning plays a key
role in query evaluation, and is the focus of this paper.

2.3 Query Trees

We consider simple yet typical queries of the form
“SELECT-FROM-WHERE” in which the WHERE clause
is limited to disjunctions and conjunctions of equalities
and inequalities {<,>, 6=}. Given a query, the query
optimizer compares possible query plans to determine
the most efficient query strategy. A query plan can be
represented as a query tree, where intermediate results
flow from the bottom of the tree to the top during query
execution. The leaves of a tree represents base relations,
while each non-leaf node represents a relation obtained
by applying one of the relational operators {select σ,
project π, join ./ } to its child nodes.

A preliminary query tree is a query tree that lacks
information about how inter-server query operations are
conducted, while a complete query tree corresponds to
a complete query plan, which specifies all the query
operations to execute a query. The function of a pre-
liminary tree is mainly to indicate a query order. How
to enumerate all possible preliminary query trees for
a given query has been extensively researched [10],
[16], while our work is, given a preliminary tree, to
generate an efficient complete query tree compliant with
authorizations.

Example 2.2: Query 1 shown in Figure 3 is issued by
server Sq belonging to party V5, which is responsible
for medical assistance. The query searches for locations
suitable for performing surgeries needing remote expert
diagnosis, i.e., districts with disinfection services, safe
houses, and satellite communication infrastructure.

Figure 4 (a) shows a preliminary query tree for Query
1. Nodes n2, n5, n6 contain operations filtering out tuples

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 4

D.district = C.district

S1: Apply authorization
(A)

A.district = B.district

(D)

(a) A preliminary query tree of Query 1

S1: Safehouse

S3: Apply authorizationS2: Apply authorization

S2: Service

S2: σservice= Disinfection
(B)

S3: Communication

S3: σfunction = Satellite
(C)

n0

n1

n4n3

n2 n5 n6

n7 n8 n9

S5: D.district = C.district

Peer-join

S1: Apply authorization
(A)

S5: A.district = B.district

Split-join (master = S2)

(b) A complete query tree based on the preliminary tree in (a)

S1: Safehouse

S3: Apply authorizationS2: Apply authorization

S2: Service

S2: σservice= Disinfection
(B)

S3: Communication

S3: σfunction = Satellite
(C)

n0

n1

n4n3

n2 n5 n6

n7 n8 n9

Fig. 4. Query trees.

inaccessible to V5 according to the authorizations (Sec-
tion 3.1). The selection operations in n3, n4 are executed
before joins to eliminate unnecessary tuples early. Each
node except for n0 and n1 specifies a server, named the
consolidator, indicating the location where the table rep-
resented by the node is generated. We assign alias names
A,B,C,D for the tables represented by n2, n3, n4, n1,
respectively. So n0 represents D ./ C = (A ./ B) ./ C,
that is, the result of Query 1. The query plan represented
by the query tree is incomplete, because it lacks query
execution information for n0 and n1.

One of the complete query trees for the preliminary
query plan is shown in Figure 4 (b), which contains
query execution information for n0 and n1. We will inter-
pret it and explain how it is generated after introducing
the query planning algorithm (Section 5).

3 AUTHORIZATIONS AND SAFE QUERY PLANS

3.1 Pairwise Authorizations
In a collaboration a variety of alliances may be formed
among parties. The information shared between two
parties depends on the type of alliance they are involved
in. Thus, the need for flexible information sharing is
usually common in a multi-party collaboration. A sim-
ple, yet expressive, authorization specification, named
pairwise authorization, is proposed to meet the access
control requirements R1–R3.

Definition 3.1 (Pairwise authorization): A pairwise au-

thorization is a rule of the form Vi
r=σ(R)−−−−−→ Vj , where

party Vi owns R and defines this rule.
The semantics is that party Vi authorizes party Vj to

access r, which is specified using a selection σ(R). Hence,
from the point of view of Vi, the content of R is r.

Note how the authorization specification satisfies the
data protection requirements. First, the tuple set de-
scribed in an authorization is accessible to a specific
party, thus overall each party has its own authorized
view (R1). Second, it is the data owner who defines the
authorization (R2). Third, it allows access control over
any given tuple (R3).

Different from the conventional distributed database
system, which defines authorizations in terms of roles
and users (instead of parties) with the assumption that
all servers hold an identical view, the pairwise authoriza-
tion implies that servers of different parties may have
different views. Therefore, it imposes new challenges
on safe query planning when coping with inter-server
information flow control.

3.2 Safe Query Plan
Definition 3.2 (Authorized view): Assume party V owns

relations R1, . . . , Rm; pairwise authorizations specify
rm+1 = σ(Rm+1), . . . , rn = σ(Rn) accessible to V .
The authorized view of V is the database Θ(V) =
{R1, . . . , Rm, rm+1, . . . , rn}

Definition 3.3 (Subrelation): The set of attributes of a
relation R is denoted as attr(R). R[α], or πα(R), de-
notes a projection on R using a subset attributes α of
attr(R) A relation R′ is a subrelation of a relation R, if
attr(R′) ⊆ attr(R) and R′ ⊆ R[attr(R′)].

Given a set of relations R = {R1, . . . , Rn}, the cross
product of the relations in R is denoted by ∆(R) =
R1 × · · · × Rn. In distributed query processing, there
are two types of query operations in a query plan:
data transmission operations and those without data
transmission such as selection and projection.

Definition 3.4 (Safe query plan): A data transmission
that sends R to a server belonging to party V is safe
if R is a subrelation of ∆(Θ(V)). A complete query plan
is safe if all the data operations specified by the plan are
safe.

For example, assume R ∈ Θ(V) and a server S
belonging to V queries πα(R), where α ⊆ attr(R). The
query contains only one potential data transmission that
sends πα(R) to S. It is safe because πα(R) is a subrelation
of R, and hence a subrelation of ∆(Θ(V)).

4 SAFE JOIN METHODS

A query operation with a unitary operator, e.g., se-
lection and projection, is executed inside a server and

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 5

is thus safe because there is no data transmission in-
volved, while a join operation may involve inter-party
data transmission. Hence, our interest is to look at
and compare different join methods to determine safe
and efficient execution strategies. In this section, we
first examine how the widely used semi-join method in
distributed query processing may violate the pairwise
authorizations. We then propose a new join method,
named split-join, which preserves the communication
efficiency advantage of semi-joins and is compliant with
the access control. Other safe join methods are also
discussed in the section.

Cost model. Communication efficiency is usually a
most important performance metric in distributed sys-
tems. Our optimization target is thus the communication
cost. The size of a relation R is denoted as |R|. If we
ignore the cost of initiating a data transmission, the cost
of sending R from Si to Sj is pi,j ∗ |R| [2], [14], [15]. The
cost of a query plan is thus the sum of the cost due to
the data transmission operations in the plan.

4.1 Why Semi-join Breaks
We consider the equi-join operation contained in n1 of
Figure 4, which joins the two tables A and B repre-
sented by the child nodes n2 and n3, respectively. Sq
is the querier, while A and B reside in S1 and S2.
respectively. We consider various party membership of
the servers (instead of sticking to that described in
Figure 1) showing the conditions under which the join
methods can be applied. In each join method, there is
a parameter, the consolidator, indicating the server that
obtains (consolidates) the join result. If a party has buddy
servers, we explore them to save communication costs.

The semi-join method was proposed for efficient join
processing in distributed database systems and has been
widely used [2]. It assumes the servers have the same
view over the database and saves the communication
cost by pushing the query processing towards the data
sources. Figure 5 (a) shows the operations in a semi-
join: (1) S1 sends A[district] to S2; (2) S2 computes
A[district] ./ B and sends it to S1. S1, the consolidator
here, computes A ./ (A[district] ./ B) to get the final join
result. Note how steps (1) and (2) help identify tuples
in B needed for the join, such that the resultant data
transmission can be reduced significantly compared to
simply sending B to S1. Finally no extra data but the
join result is sent to Sq .

The semi-join method performs well in distributed
systems where all servers hold an identical view. It
breaks in our scheme where each party may have a
distinct view. Assume Sq , S1 and S2 belong to different
parties and have different authorized views. The data
transmission operations due to a semi-join may result
in access control violation. Specifically, some tuples in
A[district] may not be accessible to S2 and similarly
some tuples in A ./ (A[district] ./ B) may be inaccessi-
ble to S1. The pairwise authorization makes the semi-join
method not applicable in general.

4.2 Split-join and Other Safe Methods

When S2 and Sq are buddies, we can consider a safe
join method, named peer-join, where S1 simply sends
A to S2. It leverages the fact that buddy servers share
the same authorized view, so the data transmission is
safe. Figure 5 (b) shows an application of the peer-join.
Symmetrically, if S1 and Sq are buddies while S2 and Sq
are not, S2 sends B to S1 to apply the peer-join. Note
that if S1 and S2 are buddies, the semi-join method is
applicable and should be preferred.

Another straightforward and safe join method, named
broker-join, is to retrieve the tables A and B to Sq , which
then performs the join evaluation locally. When Sq is
far away from the data sources, the transmission may
lead to poor communication efficiency. We can improve
the method by exploring buddy servers of the querier
near data sources. Figure 5 (c) shows that a broker-join
delegated to a buddy Sb of Sq, which may be closer to
the data sources S1 and S2.

These join methods, except the semi-join method, do
not follow the principle of distributed query processing,
while the semi-join cannot be applied when S1, S2 and
Sq belong to three different parties. We propose a new
join method, named split-join, which applies distributed
query processing safely when the three servers belong
to different parties. It explores the commonly accessible
tuple sets to do partial computation at the data sources,
and does the rest of the computation at Sq .

The method splits tuples of a relation into two sets:
tuples that can be commonly accessed by the servers
involved in the join are in one set, which form the over-
lapped authorized view, while the remaining ones are in the
other. Specifically, assume server S1 is allowed to access
tuple set B1 of B (thus B1 is the overlapped authorized
view of P (Sq) and P (S1) on B); and B2 = B − B1

(i.e. B2 = {x|x ∈ B ∧ x /∈ B1}). Assume server S2

is allowed to access tuple set A1 of A (thus A1 is the
overlapped authorized view of P (Sq) and P (S2) on A);
and A2 = A−A1. Then B1 (A1 resp.) can be safely sent
to S1 (S2 resp.) Accordingly the join can be rewritten as

A ./ B = A ./ (B1 ∪B2) = (A ./ B1) ∪ (A ./ B2)

= (A ./ B1) ∪ (A1 ./ B2) ∪ (A2 ./ B2)

The join is split into three sub-joins; the union of the
three sub-joins equals the join result.

Figure 5 (d) shows the execution of a split-join where
Sq delegates the join to its buddy server Sb. Step (1)
transmits A1 for the sub-join A1 ./ B2, while step (2)
transmits B1 needed in A ./ B1. Steps (3) and (4)
transmit A2 and B2 to Sb, which executes the third sub-
join A2 ./ B2, receives the results of the other two sub-
joins (steps (5) and (6)), and finally perform a union to
get the join result. All the data transmissions are safe
according to Definition 3.4. Thus, it is a safe join strategy.

Both the broker-join and the split-join can be applied
safely when the three servers involved in the join belong
to different parties. To illustrate the potential benefit of

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 6

The consolidator is Sb
The master is S1
Steps: (1) <S1, S2, A1>,
 (2) <S2, S1, B1>,
 (3) <S1, Sb, A2>,
 (4) <S2, Sb, B2>,
 (5) <S1, Sb, A B1>,
 (6) <S2, Sb, A1 B2>

S2S1

S2S1

Sb

The consolidator is S2
Steps: (1) <S1, S2, A>

S2S1

Sb

The consolidator is Sb
Steps: (1) <S1, Sb, A>,
 (2) <S2, Sb, B>

(d) Split-join(c) Broker-join(b) Peer-join

Only the data transmission steps are shown. Each step follows the form: <sender, receiver, data>.

(1)(1) (2)
(5)

(1)

(2)

(3) (4)

(6)

S2S1

The consolidator is S1
Steps: (1) <S1, S2, πdistrict(A)>
 (2) <S2, S1, πdistrict(A) B >

(a) Semi-join

(1)

(2)

Fig. 5. Join methods. The two relations to be joined, A and B, are at S1 and S2, respectively. If S1 and S2 are buddies,
semi-join is used. Otherwise, if S2 (S1 resp.) is a buddy+ of Sq, peer-join is used and S2 (S1 resp.) is the consolidator.
Finally, if S1, S2 and Sq belong to three different parties, broker-join and split-join are applicable and the consolidator
Sb is a buddy+ of Sq.

the split-join method, we compare the cost due to a
broker-join and a split-join.

cost(A ./broker−join B) =p1,b ∗ |A|+ p2,b ∗ |B|
cost(A ./split−join B) =p1,2 ∗ (|A1|+ |B1|)+

p1,b ∗ (|A2|+ |A ./ B1|)+
p2,b ∗ (|B2|+ |A1 ./ B2|)

It can be seen that under some conditions the split-
join method saves the communication cost. Specifically,
providing that p1,2 << p1,b = p2,b, i.e., the data sources
are close to each other but far from the querier, and the
selectivity factor satisfies |A ./ B1| < |B1| and |A1 ./
B2| < |A1|),

cost(A ./split−join B)
.
= p1,b ∗ (|A2|+ |A ./ B1|+ |B2|+ |A1 ./ B2|)
< p1,b ∗ (|A2|+ |B1|+ |B2|+ |A1|)
= p1,b ∗ (|A|+ |B|) = cost(A ./broker−join B)

Compared to the broker-join, the split-join method
conducts partial join processing at the data sources, so
that it does not require transmitting the whole tables
as the broker-join does following the principle of dis-
tributed query processing. However, we can similarly
identify conditions where the broker-join leads to less
cost. We will return to this issue later.

A join can be split in two ways:
(1) A ./ B = (A ./ B1) ∪ (A1 ./ B2) ∪ (A2 ./ B2).
(2) A ./ B = (A1 ./ B) ∪ (A2 ./ B1) ∪ (A2 ./ B2).
To distinguish the two, we use a parameter, named the
master. When the master is the owner of S1 (S2, resp.),
split 1 (2, resp.) is adopted.

Theorem 4.1: If p1,b < p2,b, split 1 is less costly; other-
wise, split 2 is less or equally costly.

Proof:

cost(A ./split1 B) =p1,2 ∗ (|A1|+ |B1|)+
p1,b ∗ (|A2|+ |A ./ B1|)+
p2,b ∗ (|B2|+ |A1 ./ B2|)

cost(A ./split2 B) =p1,2 ∗ (|A1|+ |B1|)+
p1,b ∗ (|A2|+ |A2 ./ B1|)+
p2,b ∗ (|B2|+ |A1 ./ B|)

cost(A ./split1 B)− cost(A ./split2 B)

= p1,b ∗ (|A ./ B1| − |A2 ./ B1|)
+ p2,b(|A1 ./ B2| − |A1 ./ B|)
= p1,b ∗ (|A1 ./ B1|+ |A2 ./ B1| − |A2 ./ B1|)
+ p2,b ∗ (|A1 ./ B2| − |A1 ./ B1| − |A1 ./ B2|)
= (p1,b − p2,b) ∗ |A1 ./ B1|

Therefore, if p1,b < p2,b, split 1 leads to a less com-
munication cost and should be chosen; otherwise, split
2 should be chosen.

The join methods can be represented in a uniform
form: join-method{consolidator, master} , where the master
is only applicable to the split-join. For example, the four
join methods shown in Figure 5 can be represented as
semi-join{S1, null}, peer-join{S2, null}, broker-join{Sb,
null} and split-join{Sb, S1}, respectively.

All applicable join methods should be considered to
achieve good overall communication efficiency. A query
planning algorithm that considers different query strate-
gies is presented in Section 5.

5 QUERY PLAN GENERATION

We present an algorithm that, given a set of pairwise
authorizations and a preliminary query tree, generates a
complete query tree compliant with the authorizations.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 7

Various join methods are considered and all viable strate-
gies are collected and compared to determine the query
plan with the minimum communication cost. Since se-
lections, projections and operations filtering tuples ac-
cording to authorizations are executed inside servers, we
ignore them in the algorithm and focus on joins.

We first introduce two structures: Node and Candidate.
The Node structure represents the node in the query
tree. Its baseRelation and ownerServer fields are only used
for the leaf node to refer to the base relation and the
server that stores the relation, respectively. The operator
field is the query operator taking the relations repre-
sented by lchild and rchild as operands. The Candidate
structure represents a viable join strategy for generating
the relation represented by Candidate.node; Candidate.cost
is the estimated total cost of executing the sub-tree
rooted at the node. The lcand and rcand fields are used
to trace back the candidates of the child nodes. The
candList filed in the Node structure contains all the
candidate join strategies for the node, while the chosen
is the chosen one in the final complete query tree.

struct Node{
String baseRelation, ownerServer;
String operator;
Node ∗lchild, ∗rchild;
Candidate ∗candList, ∗chosen;

};

struct Candidate{
Node ∗node;
Candidate ∗lcand, ∗rcand;
String method, consolidator, master;
int cost;

};
Algorithm 1 takes the querier Sq , the overlay network

G(N,E), the preliminary query tree T , and the database
profile including the authorizations as the input, and
generates a complete query tree that is efficient in com-
munication cost and compliant with the authorizations.
The algorithm consists of three steps:

1) Initialize the leaf nodes (Line 2. The code for Initial-
izeLeafNodes is omitted). Add a Candidate instance
for each leaf node. Since a leaf node simply rep-
resents a base relation, all the fields except node in
the Candidate instance are null or 0.

2) Accumulate candidate query strategies (Line 3).
SearchCandidates traverses the tree in a post-order
and collects feasible join strategies. For each node,
it enumerates the combination of the candidates in
the child nodes to collect join candidates for the
current node (Line 17–21).

3) Trace back. By comparing the cost of each candi-
date in candList of the root node we can identify
the candidate with the least cost. From the chosen
candidate we trace back through the tree to assign
the candidate in each of the other non-leaf nodes
(Line 5).

Algorithm 1 The algorithm for query plan generation
Input: Sq , G(N,E), T , and the database profile.
Output: a complete query plan.

1: procedure GENERATEPLAN
2: INITIALIZELEAFNODES(T)
3: SEARCHCANDIDATES(T.root)
4: cand← the one with least cost in T.root.candList
5: TRACEBACK(cand)
6: end procedure

7: procedure SEARCHCANDIDATES(node)
8: if node is leaf then return
9: lchild← node.lchild

10: rchild← node.rchild
11: if lchild 6= null then
12: SEARCHCANDIDATES(lchild)
13: end if
14: if rchild 6= null then
15: SEARCHCANDIDATES(rchild)
16: end if
17: for all lcand ∈ lchild.candList do
18: for all rcand ∈ rchild.candList do
19: EXAMINEJOINS(node, lcand, rcand)
20: end for
21: end for
22: end procedure

23: procedure EXAMINEJOINS(node, lcand, rcand)
24: lserver ← lcand.consolidator
25: rserver ← rcand.consolidator
26: if lserver = rserver then
27: ADDCAND(intra-server-join, otherInfo)
28: return
29: end if
30: if lserver and rserver are buddies then
31: ADDCAND(semi-join, otherInfo)
32: return
33: end if
34: for all buddy+ of Sq do
35: ADDCAND(broker-join, otherInfo)
36: end for
37: if lserver or rserver is a buddy of Sq then
38: ADDCAND(peer-join, otherInfo)
39: else
40: for all buddy of Sq do
41: ADDCAND(split-join, otherInfo)
42: end for
43: end if
44: end procedure

45: procedure TRACEBACK(cand)
46: if cand = null then return
47: cand.node.chosen← cand
48: TRACEBACK(cand.lcand)
49: TRACEBACK(cand.rcand)
50: end procedure

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 8

A variety of join methods may be applicable depend-
ing on the party membership of the servers involved
in the join. They are considered in ExaminJoins. Intra-
server join, whenever it is applicable, is superior to any
method discussed in Section 4.2. Similarly, if a semi-join
is applicable, it is chosen without further considering
other join strategies. Otherwise, broker-join is examined
by taking each buddy+ of Sq into consideration. Finally,
either peer-join or split-join is examined depending on the
party membership of the servers.

In AddCand (the code is omitted), a Consolidate instance
is generated; the join method and otherInfo (including the
consolidator and master parameters for the join opera-
tion, the node, and the child candidates) are then filled
in. The Consolidate.cost is the sum of the cost of the join
operation and those specified in the child candidates.

Example 5.1: A preliminary query tree is shown in
Figure 4 (a); the topology and the party membership are
depicted in Figure 1.

In the following candidate accumulation step, A ./ B
at n1 can apply either broker-join or split-join; the con-
solidator can be Sq or S5 in either case. Therefore, n1
has four candidates: split-join{Sq , S2} (split 2 is adopted
because p2,q < p1,q), broker-join{Sq , null}, split-join{S5,
S2}, and broker-join{S5, null}. As the former (latter resp.)
two candidates both obtain A ./ B at Sq (S5 resp.), an
optimization is to compare the cost of the two and keep
the better one. Next, when collecting candidates for the
root node n0, each of the candidates in the left child node
n1 is enumerated (the right child node n4 contains only
one candidate). For example, when the candidate split-
join{S5, S2} of n1 is enumerated, the peer-join candidate
that sends C to S5 and the broker-join candidate that
sends both A ./ B and C to Sq are inserted into the
candidate list of n0.

Finally, by comparing the total costs of the candidate
query plans, the most efficient one is chosen. Figure 4 (b)
shows a safe complete query tree which applies split-
join{S5, S2} to n1 and peer-join{S5, null} to n4.

6 PROOFS

6.1 Correctness and Safety
In the presence of pairwise authorizations the answer
to a query from Sq belonging to party V is correct
if the result is equivalent to answering the query in
Θ(V). In order to prove the correctness of Algorithm 1,
we first define a reference complete query tree, whose
result is obviously correct by planning a centralized query
computation at the querier. Hence, we can say that a query
tree is correct if it always generates the same query result
as the reference one.

Definition 6.1 (Reference query tree): Given a prelimi-
nary query tree T , its reference complete query tree is
generated by transforming the nodes of T through a
post-order traversal; i.e., starting from the root node,
a node is visited after its left and right subtrees are
traversed: when a node n with a join operator is visited,

if the relations represented by the two child nodes are in
the same server, an intra-server join method is assigned
to n; otherwise, for the two child nodes, if the relation
represented by the child node is not in the querier Sq , a
data transmission operation sending the relation to Sq is
added to the child node, then an intra-server join method
is assigned to n.

Definition 6.2 (Correct query tree): Let T be a prelimi-
nary query tree, which specifies a set R of base tables in
its leaf nodes. A complete query tree of T is correct if,
given any instance of R, it always computes the same
query result as the reference complete query tree of T .

Theorem 6.1: Given a preliminary query tree T , a set
of authorizations, the complete query tree T1 generated
by Algorithm 1 is correct and safe according to Defini-
tion 6.2 and 3.4.

Proof: We first prove T1 is correct. Let T2 be the
reference complete query tree of T . T1 and T2 have
the same tree structure, for they are based on the same
preliminary tree T , which implies that for each node n
in T there exists a counterpart node in T1 and one in T2,
denoted by n<1> and n<2>, respectively.

The proof is by induction on the nodes of T , showing
that for any given node n of T , its counterpart nodes
n<1> and n<2> represent the same relation.

Base case. It is trivial that, when n is a leaf node
of T , n<1> and n<2> represent the same relation as
represented by n.

Induction. Consider a non-leaf node n of T and sup-
pose, by induction, the left (right resp., if any) child
node of n<1> represents the same relation as the left
(right resp.) child node of n<2>. Since our algorithm only
impacts nodes whose operators are joins, we consider
node n with a join operator. The input relations of
the join operations are the same for n<1> and n<2>.
According to the definition of the join methods (i.e.,
semi-join, peer-join, broker-join and split-join), no matter
which of the join methods is applied, n<1> generates the
same join result as n<2>, which applies an intra-server
join.

We then prove the safety of T1 by induction on its
nodes, showing each data transmission step involved in
each node of T1 is safe, that is, the receiver is allowed
to see the transmitted data. Note that tuples of any
base table inaccessible by the querier are filtered out by
the table owner. Thus, according to Definition 3.4 any
query results computed based on these filtered tables
are accessible by the querier.

Base case. The case when n is a leaf node is trivial, for
it does not involve data transmission.

Induction. Consider an non-leaf node n of T1 with
a join operator and suppose, by induction, that the
consolidator lcon of the left child and the consolidator
rcon of the right child are authorized to see the relations
represented by the two child nodes, respectively. Now
we consider case by case when each of the four join
methods is applied.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 9

Semi-join. In this case, lcon and rcon are buddies and
have the same authorized view, so the data transmission
is safe.

Peer-join and broker-join. The only data receiver,
which is also the consolidator, is a buddy+ of Sq . It is
authorized to see the intermediate query results repre-
sented by child nodes of n.

Split-join. According to split1 and split2, lconf (rconf
resp.) only sends tuples accessible by rconf (lconf resp.)
to rconf (lconf resp.). The consolidator is a buddy+ of
Sq , which can access intermediate query results.

6.2 Authorization Confidentiality

Definition 6.3 (Authorization confidentiality): Given a
query operation, if each server involved in the execution
only needs to refer to authorizations defined by its own
party, the operation satisfies authorization confidentiality.
A query plan satisfies authorization confidentiality, if
all its operations satisfy authorization confidentiality.

During query execution, authorizations are used in
two cases. One is when a server that owns a base table
involved in the query filters out tuples inaccessible by
the querier according to the local authorizations; hence
it does not need authorizations from foreign servers.
The other case is to guide table splits when executing
split-joins. The execution of other operations including
selections, projections, peer-joins and broker joins do
not need to refer to any authorizations. We prove that
servers involved in a split-join only need to refer to au-
thorizations defined by its own party. We first introduce
a lemma.

Lemma 6.2: Given a complete query tree T generated
by the algorithm, when T is executed information is
never flowed from servers in the party of the querier
to other parties’ servers.

Proof: Let Sq be the querier. We examine the informa-
tion flow for each inter-server join method. (1) semi-join:
information is flowed between buddy servers belonging
to the same party. (2) peer-join, broker-join and split-join:
if we examine operations in each of the join methods
(Figure 5), data is never transmitted from a server of
P (Sq) to servers not belonging to P (Sq).

Lemma 6.2 can be interpreted in an intuitive way
using the query tree. Each join operation is associated
with a non-leaf node in T . The tree edges linking a
non-leaf node and its child nodes indicate how the
information flows from the consolidators of child nodes
to the consolidators of the non-lead node. Lemma 6.2
is equivalent with the conclusion that a node with a
buddy+ of Sq as the consolidator does not have any
ancestor node associated with a foreigner of Sq as the
consolidator; otherwise, it violates the lemma by flowing
information from a buddy+ of Sq to a foreigner of Sq .

Theorem 6.3: Given a preliminary query tree, the com-
plete query tree T generated from the preliminary query
tree by Algorithm 1 satisfies authorization confidential-
ity.

Proof: Let Sq be the querier. The proof is by induction
on the nodes of T , showing the sub-tree rooted at any
node n of T satisfies authorization confidentiality.

Base case. The case when n is a leaf node satisfies
authorization confidentiality trivially, for n represents a
base relation and does not need any authorizations.

Induction. Consider a non-leaf node n and suppose, by
induction, that the sub-tree Tnl

rooted at n’s left child
nl and the sub-tree Tnr

rooted at n’s right child nr (if
any) satisfy authorization confidentiality. As mentioned
above, if the join operation associated with n is not a
split-join, it does not need to consult any authorizations.
Suppose the split-join method is adopted in n and
the consolidators of n, nl and nr are S, Sl and Sr,
respectively. According to the definition of the split-join
method, S is a buddy+ of Sq , while Sl and Sr are not.
Therefore, none of the consolidators of the nodes in Tnl

is a buddy+ of Sq ; otherwise, it violates Lemma 6.2 by
flowing information from a server in P (Sq) to Sl.

Considering that broker-joins, peer-joins and split-
joins all require a buddy+ of Sq as the consolidator,
the only inter-server join method that can be adopted
by nodes of Tnl

is semi-join, which means that all the
consolidators of the nodes of Tnl

belong to the same
party, P (Sl). Thus, all the base tables in Tnl

are owned by
servers of P (Sl). So, Sl only needs authorizations defined
by servers of P (Sl) to determine how to split the relation
represented by nl in the split-join operation.

Similarly, we can prove that Sr only needs authoriza-
tions from servers of P (Sr). Therefore, the operation
associated with n satisfies authorization confidentiality.

7 EVALUATION

Parameters Values
Number of parties 9
Number of servers per party {1, 3, 5, 7}
Link cost [1, 50]
Number of relations in a server 100
Cardinality of a relation [100, 50000]
Number of attributes in a relation [3, 10]
Overlapping ratio of the authorized views {0.25, 0.5, 0.75}

TABLE 2
Evaluation parameters

In order to evaluate Algorithm 1, we have coded a
simulator in Java.1 Parameters used in the evaluation
are listed in Table 2. Specifically, 9 parties are involved;
the number of servers per party in the coalition network
is 1, 3, 5 or 7 between experiments. Each network is
generated based on the Erdös and Renyi random graph
model [7] by connecting any two servers in the network
at a probability of 0.1. The cost of each link is a random

1. The simulator has more than 6000 lines of code and could be made
available upon request. Similar to work in the literature [2], [19], the
simulator focuses on query planning and does not implement any part
of the query executer.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 10

number between 1 and 50, and servers communicate us-
ing the shortest-path routing, unless otherwise specified.
The overlapping ratio of the authorized views of parties
is a value randomly picked from the listed set; e.g., a
ratio= 0.25 means that, given any two parties and a table
not owned by the two parties, the subset of the tuples in
the table that is commonly accessible by the two parties
occupies 25% of the table.

Each data point in the figures of curves in this section
is obtained by issuing 1000 join queries and calculating
the average communication cost. Each join query is
generated by randomly choosing the querier server and
servers storing the base relations involved in the query
from the coalition network; we force that these servers
belong to different parties in order to avoid trivial intra-
party queries. Each server owns 100 relations, each with
the cardinality and the number of attributes randomly
assigned within the listed ranges in Table 2. Each join
operand, i.e., base relation, is also randomly picked from
the randomly chosen server. Unless otherwise specified,
the size of the resulting relation due to a join is defined
as 0.001 ∗ (|A| + |B|), where A and B are the operands
of the join; the join selectivity that leads to such a join
size is referred to as a low join selectivity.

To our knowledge, the centralized query evaluation,
which pulls all authorized data involved in a query to
the querier to perform query execution, is the only safe
query approach compliant with pairwise authorizations
on current distributed database systems. We call it the
baseline query evaluation. This approach has been used
in federated database systems such as GaianDB [1]. To
better present the results, the communication cost of each
query in our experiments is normalized by the cost due to the
baseline query evaluation.

Our evaluation first demonstrates the benefit of the
split-join method (Section 7.1), then the advantage of
the planning algorithm (Section 7.2). Next, we inves-
tigate the impact of a series of factors, including the
overlapping ratio of the authorized views (Section 7.3),
join selectivity (Section 7.4), link costs (Section 7.5),
and network types (Section 7.6). We finally investigate
the query response time (Section 7.7) and the effect of
pairwise authorizations (Section 7.8).

7.1 Benefit of Split-Joins

In order to evaluate the benefit of the new split-join
method, we set the number of servers per party as 1 to
avoid the effect of buddy servers. In addition, as all base
relations involved in a query are from different parties,
semi-joins cannot be applied, while broker-joins and
peer-joins in this case actually send base relations to the
querier, as the baseline query evaluation does. Therefore,
experiments with this setting are able to demonstrate the
benefit solely due to split-joins.

We vary the number of join operands from 2 to 8.
As shown by the 1 server per party line in Figure 6, the
normalized communication cost decreases from 86% to

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Number of join operands

1 server per party
3 servers per party
5 servers per party
7 servers per party

Fig. 6. Algorithm performance under different numbers of
servers per party.

66% as the number of join operands grows. The average
communication cost saving is 26%.

7.2 Communication Cost Saving

We then investigate the combined advantage of exploit-
ing various join methods and buddy servers. Three sets
of experiments are performed with 3, 5, and 7 servers
per party, respectively. Figure 6 illustrates the three cases
in contrast to the case of one server party described
in Section 7.1. It shows that by combining various join
methods and buddy servers the communication cost can
be further reduced. The minimum communication cost
reduction is 30% in the setting of two join operands and
three servers per party. The communication saving keeps
increasing when there are more buddy servers and join
operands. The cost reduction is up to 57%, while the
average communication cost saving of all the three cases
is nearly half (48%).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nc

y

Normalized communication cost

Fig. 7. The distribution of query costs.

In addition to the average cost, it is useful to see
the costs of individual queries. We take the case of 5
server per party as an example. 1000 randomly gener-
ated queries are issued for each different number of
join operands from 2 to 8; thus there are totally 7000
queries. Figure 7 shows the distribution of the costs of
the 7000 queries. The randomly generated queries lead

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 11

to a diversity of communication cost savings. For only
2.3% of the queries (168 of 7000) our algorithm generates
a plan with the cost equal to the baseline cost, while for
all the other queries our algorithm saves communication
costs. In the best case our algorithm saves 98% of the
communication cost.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

Pe
rc

en
ta

ge

Number of join operands

semi-join
broker-join

peer-join
split-join

Fig. 8. Percentages of different join methods.

To better understand the query plans generated by
our algorithm, we calculate the percentage of each join
method used in the queries above. As shown in Figure 8,
all the four inter-server join methods are considered in
our query planning. Semi-joins are not used when a
query only involves 2 or 3 join operands; the reason is
that a safe use of a semi-join requires that the two servers
involved are buddies, while our setting forces that base
relations belong to different parties. As the number of
join operands grows, cases where various join methods
can be used increase, e.g., the semi-join is applicable
when joining two intermediate relations in two buddy
servers; hence, the percentages of different join methods
become closer.

7.3 Impact of the Overlapping Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Number of join operands

0.25
0.5

0.75

Fig. 9. Algorithm performance under different overlapping
ratios of authorized views.

Next we measure how the overlapping ratio of au-
thorized views between parties affects the performance
of split-joins. So we perform three sets of experiments
with the ratio equal to 0.25, 0.5 and 0.75, respectively.

There are 5 servers per party in all the experiments.
As shown in Figure 9, a larger ratio improves the com-
munication cost slightly. For example, in the case of 8
join operands with a ratio 0.25 and 0.75 the normalized
communication cost is 0.48 and 0.42, respectively. Note
that the overlapping ratio only affects split-joins, and a
higher overlapping ratio leads to a larger A1 and B1

(Figure 5 (d)). Since the split-join is usually adopted
when p1,2 is relatively small, the sizes of A1 and B1 affect
the total join cost slightly.

7.4 Impact of Join Selectivities

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Number of join operands

Low
Medium

High

Fig. 10. Algorithm performance under different join selec-
tivities.

Next, we evaluate the impact of the join selectivity.
We consider three types of join selectivities: low, medium
and high. The low join selectivity is defined above, while
the medium and high join selectivities are 10 and 100
times of the low join selectivity, respectively. We perform
experiments with 5 servers per party and a varying
number of join operands.

Even with the high join selectivity, the size of the join
result is much smaller than the size of the relations
to be joined. The cost of a join query is thus mainly
determined by the cost of transmitting the base relations
to be joined, while the cost of sending the join result is
relatively small. Hence the change of the join selectivity
does not affect the total cost much, although a larger join
selectivity leads to a slightly higher communication cost,
as shown in Figure 10.

7.5 Impact of Link Costs
So far, the cost of each link in the network is a randomly
assigned value between 1 and 50. We then evaluate
the impact of links costs by randomly picking them
from different ranges. As illustrated in Figure 11, with a
greater link cost variance, our algorithm performs better
due to the increased variance of path costs that favors
distributed query processing. The performance becomes
stable when the range changes from 1–50 to 1–100. The
reason is that due to the use of the shortest-path routing
the variance of path costs stops growing when further
enlarging the range.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Number of join operands

(1-20)
(1-50)

(1-100)

Fig. 11. Algorithm performance under different ranges of
link costs.

7.6 Impact of Network Types

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

Number of join operands

Minimum-hop
Shortest-path

Fig. 12. Algorithm performance under two types of net-
works.

The experiments above run on networks using the
shortest-path routing. We then evaluate our algorithm
using the minimum-hop routing. In the network each
pair of servers is connected by a link, the cost of which
is a randomly assigned value between 1 and 50.

Figure 12 shows the algorithm performance under the
two different networks. The settings in both cases are
the same and both have 5 servers per party. Compared
with the cost saving of half on average in the case of the
shortest-path routing network, the cost reduction in the
case of the minimum-hop routing is 68%. The results
demonstrate that our algorithm saves communication
costs significantly for database systems on both shortest-
path and minimum-hop routing networks.

7.7 Query Response Time

Another important aspect of query planing is to reduce
query response time. Query response time is mainly
determined by two factors, data transmission between
servers and computation inside servers. Conventional
distributed query optimization work usually considers
data transmission only [14], [15], as network delays are
considered orders of magnitude larger than computation

time. We also consider delay due to data transmission
only when estimating the response time.

The time due to a single data transmission is the
product of the data size and the time to send a unit
of data, which is proportional to the communication
cost. Based on parallel query processing, given a query
plan tree, its query response time is estimated using a
bottom-up approach [15], [19]. Specifically, the response
time of a node is equal to the maximum of its chil-
dren’s response time plus the data transmission time
involved in the query operation due to that node. When
multiple servers send data to one server, e.g., in the
baseline query, the response time is the sum of each data
transmission time [19]. Compared to the baseline query
plan, the query plan generated by our algorithm re-
duces the response time, not only because of the smaller
communication cost, but also due to data transmission
among many different pairs of nodes allowing parallel
processing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

Number of join operands

Fig. 13. Query response time.

Figure 13 shows the response time results, each of
which is normalized to the response time due to the
baseline query plan. The query plans generated by our
algorithm reduce the response time by 69% on average.

7.8 Effect of Pairwise Authorization

Due to pairwise authorizations, parties have different
views on tables. We are interested to evaluate the effect
of pairwise authorizations by measuring the difference
of query results when servers of different parties issue
the same query. So the following case is considered.
We have 2 coalition parties, P1 and P2, and 8 tables,
R1...R8. Each party can randomly access X of the tuples
in each table, where X is 40%, 60% or 80%. Given a
query Q = Ri .// Rj , we calculate the overlapping
value of P1’s view V1(Q) and P2’s view V2(Q) on Q as
follows:

overlapping value =
|V1(Q) ∩ V2(Q)|

|Q|

We then run a simulation based on the case. For
each number of join operands, we issue 1000 randomly

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

Vi
ew

 o
ve

rla
pp

in
g

Number of join operands

X = 40%
X = 60%
X = 80%

Fig. 14. Effect of pairwise authorizations.

generated queries and use the geometric mean of over-
lapping values as the result. The results shown in fig-
ure 14 illustrate that when X is 40% the overlapping
is near zero. This means that the two parties obtain
very different results for the same query. In the case
of X=80%, the overlapping value is 40.9% when the
number of join operand is 2, and it decreases to 2.8%
quickly when the number increases to 8. In summary,
pairwise authorizations cause significant query result
differences between parties.

8 DISCUSSION

Data replication and fragmentation are common in dis-
tributed databases. Relation replication increases the
search space for query plan generation; for a given re-
lation, multiple copies stored in different servers should
be considered. As our algorithm supports multiple can-
didates for each operation, it is straightforward to adapt
the algorithm to addressing relation replication.

In practice, it is not uncommon that the fragments of
one relation are saved in accordance with the placement
of another, which satisfies placement dependency [22]. In
this case, given a join query, fragments of relations get
joined at servers storing the fragments separately, then
the join result is obtained by unioning the fragments.

In general, there is no correlation between the loca-
tions of the fragments of multiple relations. Many join
strategies are possible. For example, given a join query,
the join can be conducted among the fragments then the
join results are unioned to deliver the final result; or,
relations are obtained from the fragments first and then
get joined. Research on how to deal with an explosion
of possibilities is needed.

9 RELATED WORK

In a distributed system owned by a single organization,
servers belong to the same party. The view disparity
between the servers does not exist; therefore, no access
control is enforced for the inter-server information trans-
mission [4], [11], [13], [21], while in our setting the inter-
server information flow control has to be enforced due
to the view disparity.

A variety of schemes have been proposed for in-
formation sharing in coalitions and collaborations. In
a federated database system each party exports some
information [3], [9], [12], [18], [20]. All parties involved
in the federated system share the same federated view,
so that the query methods and the query planning
algorithms used in the single-party distributed system
are applicable, which is the advantage of the federated
system due to its simplicity. The drawback is the lack
of authorization flexibility: given a piece of information,
the owner either shares it with all peer parties or none of
them. Our scheme, however, allows a party to authorize
different peer parties to access different portions of its
information.

Similar authorization flexibility can be achieved by
maintaining one mini federated system for each pair
of parties, so that a party can decide the information
to be exported in each federated system. Nevertheless,
it is costly and tedious to manage so many federated
systems. In addition, query optimization is limited in
such small systems. Our scheme achieves multi-party
information sharing in a single distributed system.

The scheme proposed by Vimercati et al. allows each
party to have a different view in such multi-party infor-
mation sharing and performs distributed query process-
ing [5], [6]. The core difference between that scheme and
our scheme is the targets of access control: they target
access control over attributes of tables, while our scheme
enables access control over tuples. How to combine the
two approaches in a single system is an interesting
research question. In their scheme to define or alter
an access control rule may need agreement of multiple
parties; hence it does not satisfy the requirement of
authorization autonomy. In addition, their scheme does
not consider the network structure, while we consider
a coalition network of multiple servers per party and
propose to exploit buddy servers during query planning
to save communication costs.

10 CONCLUSIONS

In multiple-party collaborations, how to share informa-
tion safely and flexibly is an important problem. We
presented an effective solution to enforcing safe and
flexible access control. It allows each party to indepen-
dently define policies that describe which of its tuples
can be accessed by which peer party. Our algorithm
generates query plans enforcing such access control poli-
cies. We have proved the safety and correctness of the
algorithm. The experiments show the advantage of the
algorithm in saving the communication cost. Therefore,
the solution provides specification and enforcement for
safe and autonomous information sharing in multi-party
collaborations with high communication efficiency.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their constructive suggestions and comments.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2014.2357018, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014 14

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was
accomplished under Agreement Number W911NF-06-
3-0001. The views and conclusions contained in this
document are those of the author(s) and should not
be interpreted as representing the official policies, ei-
ther expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation hereon.

REFERENCES
[1] G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, and V. Mit-

sou. A dynamic distributed federated database. In 2nd Annual
Conference of International Technology Alliance, 2008.

[2] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Roth-
nie, Jr. Query processing in a system for distributed databases
(sdd-1). ACM Transactions on Database Systems, 6:602–625, Decem-
ber 1981.

[3] J. B. Bocca, M. Jarke, and C. Zaniolo. An approach for building
secure database federations. In Proceedings of 20th International
Conference on Very Large Data Bases, pages 24–35, 1994.

[4] S. Castro, M. Fugini, and P. Samarati. Database Security. 1995.
[5] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and

P. Samarati. Controlled information sharing in collaborative dis-
tributed query processing. In Proceedings of The 28th International
Conference on Distributed Computing Systems, pages 303–310. IEEE
Computer Society, 2008.

[6] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Authorization enforcement in distributed query
evaluation. Journal of Computer Security, 19(4):751–794, 2011.

[7] P. Erdos and A. Renyi. On random graphs. Publicationes Mathe-
maticae, pages 290–297, 1959.

[8] N. L. Farnan, A. J. Lee, P. K. Chrysanthis, and T. Yu. Don’t
reveal my intension: Protecting user privacy using declarative
preferences during distributed query processing. In Proceedings
of the 16th European Conference on Research in Computer Security,
pages 628–647, 2011.

[9] D. Heimbigner and D. Mcleod. A federated architecture for in-
formation management. ACM Transactions on Information Systems,
3:253–278, 1985.

[10] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: an anal-
ysis of strategy spaces and its implications for query optimization.
In Proceedings of the 1991 ACM SIGMOD international conference on
Management of data, pages 168–177.

[11] S. Jajodia and R. Sandhu. Toward a multilevel secure relational
data model. Proceedings of the 1991 ACM SIGMOD international
conference on Management of data, pages 50–59, 1991.

[12] W. Kim, N. Ballou, J. F. Garza, and D. Woelk. A distributed
object-oriented database system supporting shared and private
databases. ACM Transactions on Information Systems, 9(1):31–51,
1991.

[13] T. Lunt and E. Fernandez. Database security. SIGMOD Rec., 19:90–
97, 1990.

[14] M. T. Özsu and P. Valduriez. Principles of distributed database
systems. Springer, 2011.

[15] S. Pramanik and D. Vineyard. Optimizing join queries in dis-
tributed databases. Software Engineering, IEEE Transactions on,
14(9):1319–1326, 1988.

[16] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD
international conference on Management of data, pages 23–34.

[17] J. Serbu. DoD learns important lesson in developing coalition
network, 2011. http://www.federalnewsradio.com.

[18] A. P. Sheth and J. A. Larson. Federated database systems for man-
aging distributed, heterogeneous, and autonomous databases.
ACM Computing Surveys, 22:183–236, 1990.

[19] R. Taylor. Query optimization for distributed database systems,
2010. University of Oxford.

[20] M. Templeton, E. Lund, and P. Ward. Pragmatics of access control
in mermaid. IEEE Data Eng. Bull., 10(3):33–38, 1987.

[21] P. Wilms and B. Lindsay. A database authorization mechanism
supporting individual and group authorization, 1981. Research
Report RJ 3137, IBM Almaden Research Laboratory.

[22] C. T. Yu, C. C. Chang, M. Templeton, D. Brill, and E. Lund.
Query processing in a fragmented relational distributed system:
Mermaid. IEEE Trans. Softw. Eng., 11:795–810, 1985.

[23] Q. Zeng, J. Lobo, P. Liu, S. Calo, and P. Yadav. Safe query
processing for pairwise authorizations in coalition networks. In
Annual Conference of International Technology Alliance, 2012.

Qiang Zeng is a Ph.D. candidate in CSE at Penn State University. He
received the B.E. and M.E. degrees from Beihang University, Beijing. He
is interested in software security.

Mingyi Zhao is a Ph.D. candidate in the College of Information Sciences
and Technology in Pennsylvania State University. He received his B.E.
degree in computer science and technology from the University of
Science and Technology of China in 2011. His research interests include
distributed database security and information flow security.

Peng Liu is a Full Professor of Information Sciences and Technology at
Penn State University. He received his Ph.D. degree from George Mason
University in 1999. His research interests are in all areas of computer
and network security.

Poonam Yadav is a research associate at Computing Department at
Imperial College London, where she received her Ph.D. in 2011. Her
research interests include Wireless and Distributed Networks.

Seraphin Calo is a Research Staff Member at IBM Research and
currently manages the Network Science group within that organization.
He received the M.S., M.A., and Ph.D. degrees in electrical engineering
from Princeton University.

Jorge Lobo is an ICREA Research Professor in the Department of
Information and Communication Technologies at UPF since October
2012 - on leave from IBM T. J. Watson Research Center. Jorge received
a Ph.D. in Computer Science from the University of Maryland at College
Park. He is an ACM Distinguished Scientist.

