
On the Robustness of Stochastic Stealthy Network
Against Android App Repackaging*

Ravshanbek Norboev
Temple University, and

North American University

Zakia Hossain
Temple University

Lannan Luo
University of South Carolina

Qiang Zeng
Temple University

Abstract—An unethical developer can download a mo-
bile application, repackage it after making modifications,
and then re-distribute it; the process is called application
repackaging. Such attacks are rather common in Android
markets, posing a severe threat to both app companies
and users. Existing defenses against app repackaging
attacks are mostly centralized and based on app similarity
comparison. Recently, a novel defense, called Stochastic
Stealthy Network (SSN) [1], was proposed. Unlike most
existing defenses, it performs client-side detection of app
repackaging. Our work analyzes the robustness of SSN
by analyzing whether and how SSN can be bypassed by
attackers. We have identified five different methods of
bypassing SSN and present them in this paper. In addition,
we give guidelines on designing a robust client-side defense
against app repackaging.

Keywords-App repackaging attacks; evasion attacks.

I. INTRODUCTION

With the wide use of mobile devices, mobile app
markets have grown quickly. Meanwhile, app piracy has
been on the rise, and application repackaging is one of the
most common and dangerous forms of infringement, as
attackers not only make use of it to make profits, but also
disseminate malware by inserting code into repackaged
apps. According to a study [2], 86.0% of 1260 malware
families were repackaged from legitimate apps, indicating
application repackaging is a commonly used vehicle for
mobile malware propagation.

Due to the importance and urgency of the problem,
many defenses have been proposed. But most of them are
based on app similarity comparison [3], [4], [5], [6], [7],
[8]. They tend to be imprecise when handling obfuscated
apps, and usually rely on a centralized trusted party to
conduct detection, which is not very scalable considering
the huge number of apps. Moreover, there are many
alternative app markets, but their quality and commitment
in repackaging detection are questionable [9]. Finally,
users may download apps from places other than any app

*Technical report, Temple University, 2017. Ravshanbek Norboev
joined this project when participating in the 2017 NSF Research
Experiences for Undergraduates program at Temple University.

markets, such as FTP, and install them, bypassing the
centralized defenses.

Recently, a novel precise and scalable defense, called
Stochastic Stealthy Network (SSN) [1], was introduced to
tackle the app repackaging problem. Instead of relying on
a centralized party for defense deployment, SSN aims to
prevent repackaged apps from working on user devices.
Despite its novelty, its resilience to evasion attacks is
not discussed and analyzed yet. The goal of this work is
to dissect the defense mechanisms of SSN, and analyze
whether and how the defense can be bypassed. In addition,
based on the experiences gained from the analysis, we
provide guidelines for future researches on building robust
client-side defenses against app repackaging.

SSN is a compile-time enhancement, which inserts
repackaging detection and response code into the app
being protected, so that the inserted code runs interleaved
with the original app code to detect whether the host
app has ever been repackaged and respond to detected
attacks. SSN captures a well-known fact that each app
developer (or company) has a unique public key, which is
part of an app, specifically, the app certificate. When an
app is repackaged by another developer (i.e., the hacker),
a different public key has to be used. SSN thus detects
repackaging by comparing the original public key hidden
in the code against the one contained in the app certificate;
if they differ, an repackaging attack is detected.

While the repackaging detection method of SSN is
straightforward, how to make the inserted detection and
response operations resilient to attacks is challenging.
SSN adopts multiple measures trying to overcome the
challenge. For instance, the call for retrieving the public
key of the app, i.e., getPublicKey(), is not issued
directly but through reflection, such that text search cannot
precisely pinpoint code containing this call; in addi-
tion, the detection operation is invoked probabilistically
based on the return value of rand(), which explains
“stochastic” in the name of the SSN defense. Given these
measures, we examine whether SSN can be bypassed
systematically and how. Our main approach is to employ
various program analysis techniques that can be used to
disable or delete the repackaging detection nodes, which
all rely on invoking the API, getPublicKey(); regardless



of the other intricate designs of SSN, as long as we
can disable, delete, or calls to this API, SSN can be
successfully bypassed. In addition, we propose attacks
that modify the stochastic detection to be deterministic,
in order to find the detection nodes.

We have identified the following distinct ways to
bypass SSN:

• Fuzzing: during fuzzing, the attacker can make
use of symbolic execution or manipulate the return
value of rand(), in order to reveal as many
detection nodes as possible. Both blackbox fuzzing
and whitebox fuzzing can be applied.

• Backward program slicing: by extracting the pro-
gram slice backward starting from a suspicious
function call and then executing the slice, the attacker
can determine the destination of a reflection call.

• Code instrumentation: the attacker can insert
code before each reflection call to dynami-
cally examine whether a reflection call leads to
getPublicKey().

• Virtual function table hijacking: the attacker may
insert code into the repackaged app to manipulate the
vtable or the vtable entry for getPublicKey(),
such that such calls return fake values.

While some of the attacking methods require specific
program analysis skills of attackers, others are actually
trivial to conduct and can disable the detection nodes
completely. The experiences gained in the process of
analyzing the robustness of SSN comprehensively lead
to valuable insights into designing client-side defenses
against repackaging attacks. We thus give some guidelines
on proposing more resilient defenses.

We made the following contributions.
• We analyze the robustness of SSN, a novel client-

side defense against app repackaging attacks, and
identify multiple evasion attacks that can be used to
bypass SSN.

• To the best of our knowledge, this is the first work
that exemplifies how to comprehensively examine
the robustness of a client-side defense against app
repackaging. We believe the analysis approaches can
be adapted to analyzing other client-side defenses
to evaluate their robustness.

• We share our insights with regard to devising more
robust client-side defenses. The insights may help
researchers avoid the same or similar pitfalls. It
can also work as guideline for security researchers
working on this problem.

The remainder of the paper is organized as follows. We
briefly summarize the design of SSN in Section II, and
describe the threat model against SSN in Section III. The
evasion attacks that bypass SSN are detailed in Section IV,
and we share our guidelines for designing such client-
slide repackaging attack defenses in Section V. The paper

1 if(rand() < 0.01) {
2 funName = recoverFunName(obfuscatedStr);
3 // The reflection call invokes getPublicKey
4 currKey = reflectionCall(funName);
5 if(currKey != PUBKEY)
6 // repackaging detected!
7 }

Listing 1. Application Repackaging Detection in SSN.

is concluded in Section VI.

II. THE DESIGN OF SSN
There are mainly two motivations behind mobile

app repackaging. First, an attacker repackages an app
under their name in order to make profits, causing a
financial loss to honest developers. Second, attackers,
when repackaging a popular app, may insert malicious
payloads, e.g., sending out users’ private information and
purchasing apps without users’ awareness; and leverage
the popularity of the original app to accelerate the
propagation of the malicious one. Clearly, to maintain the
health of the app ecosystem as well as for the security
of mobile users, app repackaging detection is a critical
problem to be addressed.

SSN is a defense technique that can be used by
legitimate developers during compile time to build
repackage detection and response capabilities into their
apps, such that repackaging attack can be detected when
the repackaged apps are run on user devices, and, if
repackaging is detected, the response code prevents the
apps from working normally.

SSN detects repackaging by detecting the change of the
public key contained in the app certificate. Each developer
or app company has its own public/privte key pair. An
Android app, no matter it is legitimate or repackaged, has
to be digitally signed using the private key before it is
released, and the public key contained in the certificate,
which itself is part of the app, is used to verify the
signature. Thus, the public key contained in a certificate,
which is a unique identification of an app developer,
can be leveraged to determine whether an app has been
repackaged by an attacker. SSN inserts many detection
nodes in to an app, and each node checks the change of
the public key to detect repackaging. Once repackaging is
detected, the response code will be activated to prevent the
repackaged app from working properly on user devices.

Listing 1 illustrates a repackaging detection node
inserted by SSN. It detects repackaging by comparing
the app’s current public key with the original public key,
PUBKEY, which is embedded into the code inserted by
SSN; the current public key is retrieved through a call to
the Android system service API getPublicKey. Plus,
a hash can be used on both PUBKEY and currKey, such
that an attacker cannot search the literal value PUBKEY



to locate repackaging detection nodes. In order to hide the
call from attackers, SSN proposed the following measures:
(1) repackaging is only invoked probabilistically, as
shown in Line 1, to hide the repackaging detection nodes
from attackers running the app; (2) the function name
“getPublicKey” is obfuscated, so attackers cannot find the
word in the code; the call is issued through reflection
(Line 4), which requires the function name to be recovered
(Line 2), though. (3) after repackaging is detected, instead
of responding to it immediately, the response is delayed
to confuse the attacker who analyzes the anomalies.

III. THREAT MODEL

We then discuss possible adversary attacks against
SSN. Not only can the threat model be used to examine
SSN, but may also be adopted to evaluate the resilience
of other client-side repackaging detection.
Text search. An attacker may search for specific text
patterns, such as “getPublicKey”, to locate repackaging
detection code. In the case of SSN, it hides calls to
getPublicKey through reflection calls and transform
some normal calls into reflection calls as well, so it
is resilient to such attacks. Note that text search for
PUBKEY (Line 5) will fail, since instead of using the
original public key, SSN can derive a value from PUBKEY
using a custom hash to eliminate the literal key value
from the code.
Manual running and debugging. An attacker may
install the repackaged app and run it on an emulator
or a real device. Whenever suspicious symptoms arise,
the attacker may use a debugger to trace back to the
repackaging detection and response code. Such dynamic
analysis works only when repackaging detection is
executed. An attacker may try to intercept critical calls
the repackaging detection code relies on. For instance, an
attacker may hook calls to getPublicKey in order to
locate the repackaging detection code. However, running
a protected app manually in order to trigger all or most
of the repackaging nodes is too costly, so we regard SSN
resilient to such attacks.
Blackbox fuzzing. An attacker may use blackbox fuzzing
to run the repackaged app by providing a large number
of random inputs to trigger as many logic bombs as
possible [10], [11]. For every activated bomb, the attacker
can trace back and disable it. We will show in Section IV
that, by manipulating the return value of rand(), we can
turn the probabilistic activation of detection nodes into
deterministic ones, such that whenever a path containing
a detection node is executed, the node can be surely
revealed by an attacker. That is, the design goal of
“stochastic” activation of detection nodes in SSN fails.
Whitebox fuzzing. Various techniques have been pro-
posed to explore execution paths in a program. A dynamic
analysis based approach is to explore multiple paths
during execution [12]. Symbolic execution has been

widely applied to discovering inputs that execute program
along specific paths [13], [14], [15], [16], [17]; it uses
symbolic inputs to explore as many execution paths as
possible, and resolves the corresponding path conditions
to find the concrete inputs. Recent research has shown that
symbolic execution is an effective approach to discovering
conditional code and identifying trigger conditions [16].
When symbolic execution is applied to SSN, Line 1
cannot stop symbolic executor from exploring (and hence
exposing) the path containing repackaging detection.
Backward program slicing. An attacker may simply
circumvent trigger conditions and execute payloads
directly. E.g., given a line of suspicious code, an attacker
may perform backward program slicing starting from
that line of code, and then execute the extracted slices
to uncover the payload behavior [18]. Or, the attacker
may apply forced execution to directly execute the code
that looks suspicious [19]. Take SSN as an example: an
attacker can circumvent Line 1 to execute the following
code; thus, SSN is vulnerable to such attacks.
Code instrumentation. An attacker may modify
code to assist attack. In SSN, e.g., the attacker
can insert code right before a suspicious reflec-
tion call to check the destination of the call, i.e.,
if(funName==“getPublicKey”), such that the in-
serted code can reveal repackaging detection dynamically
when running on the user side.
Vtable hijacking. If a defense relies on specific API calls,
an attacker may perform vtable hijacking attack to return
fake values. Such attacks can fool SSN by returning fake
values when getPublicKey is invoked.

In short, while SSN is immune to text search and re-
silient to manual running and debugging, it is vulnerable
to five other types of attacks, which are discussed in
Section IV in detail.

IV. BYPASSING SSN

While SSN takes multiple measures to make repack-
aging detection code stealthy, there are still some
weaknesses that allow attackers to bypass the defense.
To analyze the effectiveness of SSN, we became the
attackers and tried to weaken the SSN defense. Our
observations include (1) SSN relies on a specific Android
API (i.e., getPublicKey()) to be effective, so it
involves a single point of failure, and (2) the probabilistic
repackaging-detection feature is meant to expose only a
small portion of detection nodes to attackers; however,
by manipulating the return value of the random number
generation function, the probabilistic detection can be
turned to be deterministic, such that all detection nodes
encountered during execution are exposed. This section
presents in-depth details on adversary techniques that can
bypass SSN.



A. Blackbox Fuzzing

A blackbox fuzzer generates a massive number of
random or semi-random inputs to execute a program
under test. According to the design of SSN, as a
repackaging-detection (RD) node is only activated at
a very low probability (see Line 1 in Listing 1), even an
execution path encounters a RD node is encountered, it is
probably not revealed to the attacker who runs the app to
find RD nodes. Considering that the attacker, who feeds
a large number of random inputs in order to reveal RD
nodes, cannot afford too much time to analyze an app, it
is expected that a large number of RD nodes survive the
attacker’s analysis.

However, the approach that SSN achieves probabilistic
activation is based on checking the return value of
a random number generation function (see Line 1 in
Listing 1). Thus, if an attacker intercepts the invocation
of rand() and returns a fake value (e.g., 0), the RD
node is activated deterministically.

There are many random input generators for the
Android system, such as Monkey [20], PUMA [21],
AndroidHooker [22], and Dynodroid. It is worth noting
that the attack that manipulates rand() calls does not
depend on blackbox fuzzing. For instance, an attacker
may apply manual running in order to invoke all or most
of the functionalities of the app, aiming to reveal the RD
nodes involved in the related execution paths.

On the other hand, given a large app, it is difficult to
achieve a high code coverage through manual running or
blackbox fuzzing. If an execution path is never explored
during the adversary analysis, the RD node in that path
can survive. Therefore, this evasion attack method can
only be regarded as semi-effective.

B. Whitebox Fuzzing

Whitebox fuzzing is a form of automatic dynamic
test generation based on symbolic execution and con-
straint solving, designed for security testing of large
applications [23]. The idea of whitebox fuzzing is to
use a fixed input, which symbolically executes the
program, gathering input constraints from conditional
statements encountered along the way. The collected
constraints are then systematically negated and solved
with a constraint solver, yielding new inputs that exercise
different execution paths in the program.

Thus, whitebox fuzzing can be leveraged to explore
as many execution paths as possible; and during the path
exploration, it can reveal the destination of the suspicious
reflection calls (see Line 4 in Listing 1). There has been
many symbolic executors that have been built to analyze
Android apps, including [24], [25], [26], [27], [28]. For
example, Jensen et al. proposed to use concolic execution
to build summaries of individual event handlers and then
generate event sequences backward, in order to find event

8 if(rand() < 0.01) {
9 funName = recoverFunName(obfuscatedStr);

10 // The reflection call invokes getPublicKey
11 currKey = reflectionCall(funName);
12 if(funName == ‘‘getPublicKey’’)
13 currKey = PUBKEY;
14 if(currKey != PUBKEY)
15 // repackaging detected!
16 }

Listing 2. Bypassing SSN based on code instrumentatioin.

sequences that reach a given target line of code in the
Android app [26].

While it is well known that whitebox fuzzing improves
code coverage compared to blackbox fuzzing, it does not
guarantee complete path exploration. Thus, we do not
claim this attacking method can completely bypass SSN.

C. Backward Program Slicing

Program slicing is a decomposition technique that ex-
tracts statements relevant to a particular computation [29].
It is usually used in debugging to locate source of
errors easily and faster. There are two forms of slicing:
backward slicing and forward slicing. A backward slice
is constructed from a target in the program, and all data
flows in this slice end of the target. It is a version of
the original program that can be executed. An important
property of any backward slice is that it preserves the
effect of the original program on the variable chosen at the
selected point of interest within the program. Typically, it
can assist a developer to locate the parts of the program
containing a bug.

We propose to apply backward program slicing to by-
passing SSN. Specifically, we take a suspicious reflection
call (Line 4 in Listing 1) as a target and extracts the
backward slice, so that we can compute the value of
funName from the slice to check whether it is equal to

“getPublicKey()”. Since SSN uses relatively simple logic
to hide the value of funName, it should be easy to get
the backward slice and reveal its value.

D. Code Instrumentation

Code instrumentation is performed by adding state-
ments to software in order to monitor performance and
operation of the software during runtime. To bypass
SSN, we can insert code to check the destinations of
all reflection calls and “fool” SSN.

Listing 2 shows a concrete example how to perform
code instrumentation on the app protected by SSN. By
inserting two simple lines of code (Lines 12 and 13) after
each reflection call, on the user device side, it can check
the destination of the reflection call and manipulate the
variable used to store the return value (that is, currKey)
of the call to getPublicKey. Therefore, in order to



bypass SSN, the attacker simply insert such code into an
app before releasing the repackaged app.

E. Vtable Hijacking
A virtual table (vtable) is a lookup table function

used to resolve function calls in a dynamic binding
manner. An object in a Java program contains one pointer
towards a vtable, which contains function pointers to the
implementation of the methods associated with the object.

By manipulating the whole vtable or the vtable entry
for getPublicKey, an attacker can arbitrarily control
the return value of calls to getPublicKey. The
opensource project, ARTDroid [30], illustrates how to
manipulate a targeted vtable entry, but it requires the
root privilege to launch the attack. Even without the root
privilege, an attacker should be able to insert crafted
native code into an app to manipulate the vtable entry.
Note that the paper of SSN also briefly points out the
threat of vtable hijacking attacks.
Summary: We have presented five different methods
to bypass SSN. while blackbox fuzzing and whitebox
fuzzing cannot guarantee bypassing SSN completely,
the other three methods indeed can. Among the three,
the attacking method based on code instrumentation
is trivial to launch. The analysis demonstrates that SSN,
despite its novelty, is a very weak defense against app
repackaging detection.

V. GUIDELINES FOR DESIGNING CLIENT-SIDE
REPACKAGING DETECTION DEFENSES

Guideline 1: the main challenge in proposing a
robust repackaging detection technique is how to protect
repackaging detection code from attacks; to examine
the robustness of the technique, the designers should
take into account various adversary analysis, such as
static analysis, dynamic analysis, and combined analysis
methods. Nowadays, many advanced analysis techniques
have become mature. For example, backward slicing [18]
and symbolic execution [16] are considered in our
analysis. Thus, a comprehensive examination of the
resilience of the proposed detection technique is necessary.
For instance, if the detection code demonstrates itself with
some patterns, it will be trivial to identify and eliminate
the related code. As another example, if the detection
capability relies on specific system APIs and the call
sites of those APIs can be located, an attacker can either
modify the API calls or manipulate the return values.
Moreover, rather than regarding the repackaging detection
as secret, researchers should propose a technique that
is resilient under whitebox analysis, because attackers
may propose novel custom analysis once the repackaging
detection technique is known.

Guideline 2: While SSN only uses the change of the
public key as the indication of repackaging attacks, a
repackaged app demonstrates itself with various explicit

modifications, such as icons, code hash values, and
company names. They all can be used as features to
detect repackaging attacks. Moreover, SSN triggers the
detection logic probabilistically; however, the probabilis-
tic mechanism can be easily manipulated by attackers
through controlling the generation of random numbers.
How to keep the probabilistic trigger advantage mean-
while avoiding the easy manipulation of attackers is an
interesting problem but also a challenge.

Guideline 3: self-modifying code has been proven
to be a very effective obfuscation approach, and this
obfuscation technique can be used to hide the detection
code. Specifically, the detection code can be transformed
into native code, which is then encrypted into data and is
only recovered when being executed. In order to prevent
the attackers from simply deleting suspicious repackaging
detection code, a vtable way is to stitch together the
detection code and the original function code (i.e., the
detection code is weaved into the original app code). This
can defeat attacks that try to delete suspicious code.

Guideline 4: it is important to not break the original
app and make sure the overall overhead due to the
repackaging detection small and ideally negligible.

Our recent work [31] has proposed a novel and robust
client-side defense technique against app repackaging
attack, following all the guidelines. We propose a creative
use of logic bombs, which are regularly used in malware,
to conquer the main challenge described in Guideline 1.
A novel bomb structure is invented and used: the trigger
conditions are constructed to exploit the differences
between the attacker and users, such that a bomb that lies
dormant on the attacker side will be activated on one of
the user devices, while the repackaging detection code,
which is packed as the bomb payload, is kept inactive
until the trigger conditions are satisfied. Moreover, the
repackaging detection code is woven into the original app
code and gets encrypted; thus, attacks by modifying or
deleting suspicious code will corrupt the app itself. We
have implemented a prototype, named BOMBDROID [31],
that builds the repackaging detection into apps through
bytecode instrumentation, and the evaluation shows that
the technique is effective, efficient, and resilient to various
adversary analysis including symbolic execution, multi-
path exploration, and program slicing.

VI. CONCLUSION

Repackaging attacks have become a severe threat to the
Android ecosystem, infringing the IP of honest developers
and disseminating malicious code. Among the many
defenses against repackaging attacks, SSN is a novel
client-side defense. Our work, however, has shown that
the technique actually can be bypassed by attackers in
multiple ways, and some of them are actually easy to
conduct, for example, code instrumentation to detect calls
to specific APIs. Our analysis demonstrates that SSN is



not resilient to evasion attacks. By no means this work
is to negate the contribution and novelty of SSN, but it
demonstrates the extraordinary difficulties in designing a
new resilient defense technique.

Based on our analysis experiences, we have gained
valuable insights into the problem. The guidelines based
on such insights hopefully can inspire other researchers
who work on tackling the critical repackaging attack
problem. In addition, we have briefly introduced our
recent work, BOMBDROID, which follows the guidelines
in its design and stands for a new state-of-the-art client
side defense against app repackaging.

REFERENCES

[1] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing
android apps,” in DSN, 2016.

[2] Y. Zhou and X. Jiang, “Dissecting Android malware: Character-
ization and evolution,” in S&P, 2012.

[3] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones:
Detecting cloned applications on Android markets,” in ESORICS,
2012.

[4] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid:
Towards obfuscation-resilient mobile application repackaging
detection,” in WiSec, 2014.

[5] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,
“Juxtapp: A scalable system for detecting code reuse among
Android applications,” in DIMVA, 2013.

[6] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and
scalability simultaneously in detecting application clones on
Android markets,” in ICSE, 2014.

[7] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
CODASPY, 2012.

[8] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang, “Pla-
giarizing smartphone applications: attack strategies and defense
techniques,” in In Engineering Secure Software and Systems,
2012.

[9] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner,
E. Athanasopoulos, F. Maggi, C. Platzer, S. Zanero, and
S. Ioannidis, “Andradar: fast discovery of android applications
in alternative markets,” in DIMVA, 2014.

[10] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing
the android apps with intent-filter tag,” in Proceedings of
International Conference on Advances in Mobile Computing &
Multimedia, 2013.

[11] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for Android apps,” in FSE, 2013.

[12] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple
execution paths for malware analysis,” in S&P, 2007.

[13] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin, “BitScope: Automatically
dissecting malicious binaries,” in Tech. Rep. CMU-CS-07-133,
2007.

[14] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and
H. Yin, “Automatically identifying trigger-based behavior in
malware,” in Botnet Detection, 2008.

[15] J. R. Crandall, G. Wassermann, D. A. de Oliveira, Z. Su, S. F. Wu,
and F. T. Chong, “Temporal search: Detecting hidden malware
timebombs with virtual machines,” in ACM Sigplan Notices,
2006.

[16] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna, “TriggerScope: Towards detecting logic bombs
in android applications,” in S&P, 2016.

[17] L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao,
M. Yang, X. Xing, and P. Liu, “System service call-oriented
symbolic execution of android framework with applications to
vulnerability discovery and exploit generation,” in Proceedings
of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 2017, pp. 225–238.

[18] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Har-
vesting runtime values in android applications that feature anti-
analysis techniques,” in NDSS, 2016.

[19] J. Wilhelm and T. cker Chiueh, “A forced sampled execution
approach to kernel rootkit identification,” in International
Workshop on Recent Advances in Intrusion Detection, 2007.

[20] UI/Application Exerciser Monkey, 2017, http://developer.android.
com/tools/help/monkey.html.

[21] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan,
“PUMA: programmable UI-automation for large-scale dynamic
analysis of mobile apps,” in Proceedings of the 12th annual
international conference on Mobile systems, applications, and
services, 2014.

[22] AndroidHooker, 2016, https://github.com/AndroidHooker.
[23] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated

whitebox fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.
[24] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and

R. Mahmood, “Testing android apps through symbolic execution,”
in Software Engineering Notes, 2012.

[25] S. Anand, M. Naik, H. Yang, and M. J. Harrold, “Automated
concolic testing of smartphone apps,” in FSE, 2012.

[26] C. S. Jensen, M. R. Prasad, and A. Moller, “Automated testing
with targeted event sequence generation,” in ISSTA, 2013.

[27] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “SIG-Droid:
automated system input generation for android applications,” in
ISSRE, 2015.

[28] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for
privacy leakage detection,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.
ACM, 2013, pp. 1043–1054.

[29] M. Weiser, “Program slicing,” in Proceedings of the 5th
international conference on Software engineering. IEEE Press,
1981, pp. 439–449.

[30] V. Costamagna and C. Zheng, “Artdroid: A virtual-method
hooking framework on android art runtime.” in IMPS@ ESSoS,
2016.

[31] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient
decentralized android application repackaging detection using
Logic Bombs,” in IEEE/ACM International Symposium on Code
Generation and Optimization, 2018.


