Journal Articles

Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and Spt5 CTD phospho-sites in directing co-transcriptional histone modifications in the fission yeast Schizosaccharomyces pombe. Steady-state levels of methylation at histone H3 lysines 4 (H3K4me) and 36 (H3K36me) were sensitive to multiple mutations of the Rpb1 CTD repeat motif (Y1S2P3T4S5P6S7). Ablation of the Spt5 CTD phospho-site Thr1 reduced H3K4me levels but had minimal effects on H3K36me. Nonetheless, Spt5 CTD mutations potentiated the effects of Rpb1 CTD mutations on H3K36me, suggesting overlapping functions. Phosphorylation of Rpb1 Ser2 by the Cdk12 orthologue Lsk1 positively regulated H3K36me but negatively regulated H3K4me. H3K36me and histone H2B monoubiquitylation required Rpb1 Ser5 but were maintained upon inactivation of Mcs6/Cdk7, the major kinase for Rpb1 Ser5 in vivo, implicating another Ser5 kinase in these regulatory pathways. Our results elaborate the CTD ‘code’ for co-transcriptional histone modifications.

Categories: Journal Articles

Extensive RPA2 hyperphosphorylation promotes apoptosis in response to DNA replication stress in CHK1 inhibited cells

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

The replication protein A (RPA)–ssDNA complex formed at arrested replication forks recruits key proteins to activate the ATR-CHK1 signalling cascade. When CHK1 is inhibited during DNA replication stress, RPA2 is extensively hyperphosphorylated. Here, we investigated the role of RPA2 hyperphosphorylation in the fate of cells when CHK1 is inhibited. We show that proteins normally involved in DNA repair (RAD51) or control of RPA phosphorylation (the PP4 protein phosphatase complex) are not recruited to the genome after treatment with CHK1 and DNA synthesis inhibitors. This is not due to RPA2 hyperphosphorylation as suppression of this response does not restore loading suggesting that recruitment requires active CHK1. To determine whether RPA2 hyperphosphorylation protects stalled forks from collapse or induction of apoptosis in CHK1 inhibited cells during replication stress, cells expressing RPA2 genes mutated at key phosphorylation sites were characterized. Mutant RPA2 rescued cells from RPA2 depletion and reduced the level of apoptosis induced by treatment with CHK1 and replication inhibitors however the incidence of double strand breaks was not affected. Our data indicate that RPA2 hyperphosphorylation promotes cell death during replication stress when CHK1 function is compromised but does not appear to be essential for replication fork integrity.

Categories: Journal Articles

The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

The WRN helicase/exonuclease protein is required for proper replication fork recovery and maintenance of genome stability. However, whether the different catalytic activities of WRN cooperate to recover replication forks in vivo is unknown. Here, we show that, in response to replication perturbation induced by low doses of the TOP1 inhibitor camptothecin, loss of the WRN exonuclease resulted in enhanced degradation and ssDNA formation at nascent strands by the combined action of MRE11 and EXO1, as opposed to the limited processing of nascent strands performed by DNA2 in wild-type cells. Nascent strand degradation by MRE11/EXO1 took place downstream of RAD51 and affected the ability to resume replication, which correlated with slow replication rates in WRN exonuclease-deficient cells. In contrast, loss of the WRN helicase reduced exonucleolytic processing at nascent strands and led to severe genome instability. Our findings identify a novel role of the WRN exonuclease at perturbed forks, thus providing the first in vivo evidence for a distinct action of the two WRN enzymatic activities upon fork stalling and providing insights into the pathological mechanisms underlying the processing of perturbed forks.

Categories: Journal Articles

A novel mode of nuclease action is revealed by the bacterial Mre11/Rad50 complex

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

The Mre11/Rad50 complex is a central player in various genome maintenance pathways. Here, we report a novel mode of nuclease action found for the Escherichia coli Mre11/Rad50 complex, SbcC2/D2 complex (SbcCD). SbcCD cuts off the top of a cruciform DNA by making incisions on both strands and continues cleaving the dsDNA stem at ~10-bp intervals. Using linear-shaped DNA substrates, we observed that SbcCD cleaved dsDNA using this activity when the substrate was 110 bp long, but that on shorter substrates the cutting pattern was changed to that predicted for the activity of a 3'-5' exonuclease. Our results suggest that SbcCD processes hairpin and linear dsDNA ends with this novel DNA end-dependent binary endonuclease activity in response to substrate length rather than using previously reported activities. We propose a model for this mode of nuclease action, which provides new insight into SbcCD activity at a dsDNA end.

Categories: Journal Articles

NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.

Categories: Journal Articles

Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.

Categories: Journal Articles

Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

GW182 family proteins play important roles in microRNA (miRNA)-mediated RNA silencing. They directly interact with Argonaute (Ago) proteins in processing bodies (P bodies), cytoplasmic foci involved in mRNA degradation and storage. Recently, we revealed that a human GW182 family protein, TNRC6A, is a nuclear-cytoplasmic shuttling protein, and its subcellular localization is regulated by its own nuclear localization signal and nuclear export signal. Regarding the further controlling mechanism of TNRC6A subcellular localization, we found that TNRC6A protein is tethered in P bodies by direct interaction with Ago2 under Ago2 overexpression condition in HeLa cells. Furthermore, it was revealed that such Ago proteins might be strongly tethered in the P bodies through Ago-bound small RNAs. Thus, our results indicate that TNRC6A subcellular localization is substantially controlled by the interaction with Ago proteins. Furthermore, it was also revealed that the TNRC6A subcellular localization affects the RNA silencing activity.

Categories: Journal Articles

Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.

Categories: Journal Articles

The ubiquitin ligase HERC3 attenuates NF-{kappa}B-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Activation of NF-B-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-B activity is limited by cytoplasmic retention of the NF-B dimer through binding to inhibitory IB proteins. However, increasing evidence suggests that NF-B activity can also be efficiently contained by direct ubiquitination of NF-B subunits. Here, we identify the HECT-domain ubiquitin ligase HERC3 as novel negative regulator of NF-B activity. We find that HERC3 restricts NF-B nuclear import and DNA binding without affecting IBα degradation. Instead HERC3 indirectly binds to the NF-B RelA subunit after liberation from IBα inhibitor leading to its ubiquitination and protein destabilization. Remarkably, the regulation of RelA activity by HERC3 is independent of its inherent ubiquitin ligase activity. Rather, we show that HERC3 and RelA are part of a multi-protein complex containing the proteasome as well as the ubiquitin-like protein ubiquilin-1 (UBQLN1). We present evidence that HERC3 and UBQLN1 provide a link between NF-B RelA and the 26S proteasome, thereby facilitating RelA protein degradation. Our findings establish HERC3 as novel candidate regulating the inflammatory response initiated by NF-B.

Categories: Journal Articles

Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.

Categories: Journal Articles

Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.

Categories: Journal Articles

Hairpins under tension: RNA versus DNA

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

We use optical tweezers to control the folding and unfolding of individual DNA and RNA hairpins by force. Four hairpin molecules are studied in comparison: two DNA and two RNA ones. We observe that the conformational dynamics is slower for the RNA hairpins than for their DNA counterparts. Our results indicate that structures made of RNA are dynamically more stable. This difference might contribute to the fact that DNA and RNA play fundamentally different biological roles in spite of chemical similarity.

Categories: Journal Articles

Mitochondrial poly(A) polymerase is involved in tRNA repair

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Transcription of the mitochondrial genome results in polycistronic precursors, which are processed mainly by the release of tRNAs interspersed between rRNAs and mRNAs. In many metazoan mitochondrial genomes some tRNA genes overlap with downstream genes; in the case of human mitochondria the genes for tRNATyr and tRNACys overlap by one nucleotide. It has previously been shown that processing of the common precursor releases an incomplete tRNATyr lacking the 3'-adenosine. The 3'-terminal adenosine has to be added before addition of the CCA end and subsequent aminoacylation. We show that the mitochondrial poly(A) polymerase (mtPAP) is responsible for this A addition. In vitro, a tRNATyr lacking the discriminator is a substrate for mtPAP. In vivo, an altered mtPAP protein level affected tRNATyr maturation, as shown by sequencing the 3' ends of mitochondrial tRNAs. Complete repair could be reconstituted in vitro with three enzymes: mtPAP frequently added more than one A to the 3' end of the truncated tRNA, and either the mitochondrial deadenylase PDE12 or the endonuclease RNase Z trimmed the oligo(A) tail to a single A before CCA addition. An enzyme machinery that evolved primarily for other purposes thus allows to tolerate the frequent evolutionary occurrence of gene overlaps.

Categories: Journal Articles

The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of N-1-methyladenosine (m1A) in the template RNA. This naturally occurring modification is associated with structural effects, but it is also known as a mediator of antibiotic resistance in ribosomal RNA. In structural probing experiments with dimethylsulfate, m1A is routinely detected by RT-arrest. A specifically developed RNA-Seq protocol was tailored to the simultaneous analysis of RT-arrest and misincorporation patterns. By application to a variety of native and synthetic RNA preparations, we found a characteristic signature of m1A, which, in addition to an arrest rate, features misincorporation as a significant component. Detailed analysis suggests that the signature depends on RNA structure and on the nature of the nucleotide 3' of m1A in the template RNA, meaning it is sequence dependent. The RT-signature of m1A was used for inspection and confirmation of suspected modification sites and resulted in the identification of hitherto unknown m1A residues in trypanosomal tRNA.

Categories: Journal Articles

Biologically-supported structural model for a viral satellite RNA

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Satellite RNAs (satRNAs) are a class of small parasitic RNA replicon that associate with different viruses, including plus-strand RNA viruses. Because satRNAs do not encode a polymerase or capsid subunit, they rely on a companion virus to provide these proteins for their RNA replication and packaging. SatRNAs recruit these and other required factors via their RNA sequences and structures. Here, through a combination of chemical probing analysis of RNA structure, phylogenetic structural comparisons, and viability assays of satRNA mutants in infected cells, the biological importance of a deduced higher-order structure for a 619 nt long tombusvirus satRNA was assessed. Functionally-relevant secondary and tertiary RNA structures were identified throughout the length of the satRNA. Notably, a 3'-terminal segment was found to adopt two mutually-exclusive RNA secondary structures, both of which were required for efficient satRNA accumulation. Accordingly, these alternative conformations likely function as a type of RNA switch. The RNA switch was also found to engage in a required long-range kissing-loop interaction with an upstream sequence. Collectively, these results establish a high level of conformational complexity within this small parasitic RNA and provide a valuable structural framework for detailed mechanistic studies.

Categories: Journal Articles

miR-58 family and TGF-{beta} pathways regulate each other in Caenorhabditis elegans

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Despite the fact that microRNAs (miRNAs) modulate the expression of around 60% of protein-coding genes, it is often hard to elucidate their precise role and target genes. Studying miRNA families as opposed to single miRNAs alone increases our chances of observing not only mutant phenotypes but also changes in the expression of target genes. Here we ask whether the TGF-β signalling pathways, which control many animal processes, might be modulated by miRNAs in Caenorhabditis elegans. Using a mutant for four members of the mir-58 family, we show that both TGF-β Sma/Mab (controlling body size) and TGF-β Dauer (regulating dauer, a stress-resistant larval stage) are upregulated. Thus, mir-58 family directly inhibits the expression of dbl-1 (ligand), daf-1, daf-4 and sma-6 (receptors) of TGF-β pathways. Epistasis experiments reveal that whereas the small body phenotype of the mir-58 family mutant must invoke unknown targets independent from TGF-β Sma/Mab, its dauer defectiveness can be rescued by DAF-1 depletion. Additionally, we found a negative feedback loop between TGF-β Sma/Mab and mir-58 and the related mir-80. Our results suggest that the interaction between mir-58 family and TGF-β genes is key on decisions about animal growth and stress resistance in C. elegans and perhaps other organisms.

Categories: Journal Articles

Architecture of the eIF2B regulatory subcomplex and its implications for the regulation of guanine nucleotide exchange on eIF2

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Eukaryal translation initiation factor 2B (eIF2B) acts as guanine nucleotide exchange factor (GEF) for eIF2 and forms a central target for pathways regulating global protein synthesis. eIF2B consists of five non-identical subunits (α–), which assemble into a catalytic subcomplex (, ) responsible for the GEF activity, and a regulatory subcomplex (α, β, ) which regulates the GEF activity under stress conditions. Here, we provide new structural and functional insight into the regulatory subcomplex of eIF2B (eIF2BRSC). We report the crystal structures of eIF2Bβ and eIF2B from Chaetomium thermophilum as well as the crystal structure of their tetrameric eIF2B(β)2 complex. Combined with mutational and biochemical data, we show that eIF2BRSC exists as a hexamer in solution, consisting of two eIF2Bβ heterodimers and one eIF2Bα2 homodimer, which is homologous to homohexameric ribose 1,5-bisphosphate isomerases. This homology is further substantiated by the finding that eIF2Bα specifically binds AMP and GMP as ligands. Based on our data, we propose a model for eIF2BRSC and its interactions with eIF2 that is consistent with previous biochemical and genetic data and provides a framework to better understand eIF2B function, the molecular basis for Gcn–, Gcd– and VWM/CACH mutations and the evolutionary history of the eIF2B complex.

Categories: Journal Articles

Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.

Categories: Journal Articles

Molecular basis for the substrate specificity and catalytic mechanism of thymine-7-hydroxylase in fungi

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

TET proteins play a vital role in active DNA demethylation in mammals and thus have important functions in many essential cellular processes. The chemistry for the conversion of 5mC to 5hmC, 5fC and 5caC catalysed by TET proteins is similar to that of T to 5hmU, 5fU and 5caU catalysed by thymine-7-hydroxylase (T7H) in the nucleotide anabolism in fungi. Here, we report the crystal structures and biochemical properties of Neurospora crassa T7H. T7H can bind the substrates only in the presence of cosubstrate, and binding of different substrates does not induce notable conformational changes. T7H exhibits comparable binding affinity for T and 5hmU, but 3-fold lower affinity for 5fU. Residues Phe292, Tyr217 and Arg190 play critical roles in substrate binding and catalysis, and the interactions of the C5 modification group of substrates with the cosubstrate and enzyme contribute to the slightly varied binding affinity and activity towards different substrates. After the catalysis, the products are released and new cosubstrate and substrate are reloaded to conduct the next oxidation reaction. Our data reveal the molecular basis for substrate specificity and catalytic mechanism of T7H and provide new insights into the molecular mechanism of substrate recognition and catalysis of TET proteins.

Categories: Journal Articles

KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA

Nucleic Acids Research - Mon, 11/16/2015 - 01:17

Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of 2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1–2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer–dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1–2 and LBS2–1–3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.

Categories: Journal Articles
Syndicate content