A Generalized Graph-Based Method for Engineering
Swarm Solutions to Multiagent Problems
R. Paul Wiegand
Mitchell A. Potter
Donald A. Sofge
William M. Spears
We present two key components of a principled method for constructing modular, heterogeneous swarms. First, we generalize a well-known technique for representing swarm behaviors to extend the power of multiagent systems by specializing agents and their interactions. Second, a novel graph-based method is introduced for designing swarm-based behaviors for multiagent teams. This method includes engineer-provided knowledge through explicit design decisions pertaining to specialization, heterogeneity, and modularity. We show the representational power of our generalized representation can be used to evolve a solution to a challenging multiagent resource protection problem. We also construct a modular design by hand, resulting in a scalable and intuitive heterogeneous solution for the resource protection problem.