Journal Articles

Nonlinearities in protein space limit the utility of informatics in protein biophysics

ABSTRACT

We examine the utility of informatic-based methods in computational protein biophysics. To do so, we use newly developed metric functions to define completely independent sequence and structure spaces for a large database of proteins. By investigating the relationship between these spaces, we demonstrate quantitatively the limits of knowledge-based correlation between the sequences and structures of proteins. It is shown that there are well-defined, nonlinear regions of protein space in which dissimilar structures map onto similar sequences (the conformational switch), and dissimilar sequences map onto similar structures (remote homology). These nonlinearities are shown to be quite common—almost half the proteins in our database fall into one or the other of these two regions. They are not anomalies, but rather intrinsic properties of structural encoding in amino acid sequences. It follows that extreme care must be exercised in using bioinformatic data as a basis for computational structure prediction. The implications of these results for protein evolution are examined. Proteins 2015; 83:1923–1928. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Estimating first-passage time distributions from weighted ensemble simulations and non-Markovian analyses

Protein Science - Wed, 09/09/2015 - 23:55
Abstract

First-passage times (FPTs) are widely used to characterize stochastic processes such as chemical reactions, protein folding, diffusion processes or triggering a stock option. In previous work (Suarez et al., JCTC 2014;10:2658-2667), we demonstrated a non-Markovian analysis approach that, with a sufficient subset of history information, yields unbiased mean first-passage times from weighted-ensemble (WE) simulations. The estimation of the distribution of the first-passage times is, however, a more ambitious goal since it cannot be obtained by direct observation in WE trajectories. Likewise, a large number of events would be required to make a good estimation of the distribution from a regular “brute force” simulation. Here, we show how the previously developed non-Markovian analysis can generate approximate, but highly accurate, FPT distributions from WE data. The analysis can also be applied to any other unbiased trajectories, such as from standard molecular dynamics simulations. The present study employs a range of systems with independent verification of the distributions to demonstrate the success and limitations of the approach. By comparison to a standard Markov analysis, the non-Markovian approach is less sensitive to the user-defined discretization of configuration space.

Categories: Journal Articles

Development of electron spin echo envelope modulation spectroscopy to probe the secondary structure of recombinant membrane proteins in a lipid bilayer

Protein Science - Wed, 09/09/2015 - 23:54
Abstract

Membrane proteins conduct many important biological functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is very difficult to obtain structural information on membrane-bound proteins using traditional biophysical techniques. We are developing a new approach to probe the secondary structure of membrane proteins using the pulsed EPR technique of Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. This method has been successfully applied to model peptides made synthetically. However, in order for this ESEEM technique to be widely applicable to larger membrane protein systems with no size limitations, protein samples with deuterated residues need to be prepared via protein expression methods. For the first time, this study shows that the ESEEM approach can be used to probe the local secondary structure of a 2H-labeled d8-Val overexpressed membrane protein in a membrane mimetic environment. The membrane-bound human KCNE1 protein was used with a known solution NMR structure to demonstrate the applicability of this methodology. Three different α-helical regions of KCNE1 were probed: the extracellular domain (Val21), transmembrane domain (Val50), and cytoplasmic domain (Val95). These results indicated α-helical structures in all three segments, consistent with the micelle structure of KCNE1. Furthermore, KCNE1 was incorporated into a lipid bilayer and the secondary structure of the transmembrane domain (Val50) was shown to be α-helical in a more native-like environment. This study extends the application of this ESEEM approach to much larger membrane protein systems that are difficult to study with X-ray crystallography and/or NMR spectroscopy.

Categories: Journal Articles

A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

PLoS Computational Biology - Wed, 09/09/2015 - 16:00

by Feixiong Cheng, Chuang Liu, Chen-Ching Lin, Junfei Zhao, Peilin Jia, Wen-Hsiung Li, Zhongming Zhao

Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.
Categories: Journal Articles

Sequential unfolding of the hemolysin two-partner secretion domain from Proteus mirabilis

Protein Science - Wed, 09/09/2015 - 00:14
Abstract

Protein secretion is a major contributor to Gram-negative bacterial virulence. Type Vb or two-partner secretion (TPS) pathways utilize a membrane bound β-barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C-proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N-proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site-specific mutants of HpmA265. By correlating the effect of individual site-specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C-terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C-terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N-proximal polar core subdomain.

Categories: Journal Articles

Insights into electron leakage in the reaction cycle of cytochrome P450 BM3 revealed by kinetic modeling and mutagenesis

Protein Science - Wed, 09/09/2015 - 00:06
Abstract

As a single polypeptide, cytochrome P450 BM3 fuses oxidase and reductase domains and couples each domain's function to perform catalysis with exceptional activity upon binding of substrate for hydroxylation. Mutations introduced into the enzyme to change its substrate specificity often decrease coupling efficiency between the two domains, resulting in unproductive consumption of cofactors and formation of water and/or reactive species. This phenomenon can correlate with leakage, in which P450 BM3 uses electrons from NADPH to reduce oxygen to water and/or reactive species even without bound substrate. The physical basis for leakage is not yet well understood in this particular member of the cytochrome P450 family. To clarify the relationship between leakage and coupling, we used simulations to illustrate how different combinations of kinetic parameters related to substrate-free consumption of NADPH and substrate hydroxylation can lead to either minimal effects on coupling or a dramatic decrease in coupling as a result of leakage. We explored leakage in P450 BM3 by introducing leakage-enhancing mutations and combining these mutations to assess whether doing so increases leakage further. The variants in this study provide evidence that while a transition to high spin may be vital for coupled hydroxylation, it is not required for enhanced leakage; substrate binding and the consequent shift in spin state are not necessary as a redox switch for catalytic oxidation of NADPH. Additionally, the variants in this study suggest a tradeoff between leakage and stability and thus evolvability, as the mutations we investigated were far more deleterious than other mutations that have been used to change substrate specificity.

Categories: Journal Articles

Parkinson's disease: Crystals of a toxic core

Nature - Tue, 09/08/2015 - 23:00

Parkinson's disease: Crystals of a toxic core

Nature 525, 7570 (2015). doi:10.1038/nature15630

Authors: Michel Goedert & Yifan Cheng

An ultra-high-resolution structure of the core segment of assembled α-synuclein — the protein that aggregates in the brains of patients with Parkinson's disease — has been determined. A neurobiologist and a structural biologist discuss the implications of this advance. See Article p.486

Categories: Journal Articles

Epigenetics: The karma of oil palms

Nature - Tue, 09/08/2015 - 23:00

Epigenetics: The karma of oil palms

Nature 525, 7570 (2015). doi:10.1038/nature15216

Authors: Jerzy Paszkowski

Despite their clonal origin, some oil palm trees develop fruits that give almost no oil. It emerges that the number of methyl groups attached to a DNA region called Karma determine which plants are defective. See Letter p.533

Categories: Journal Articles

Structure of the toxic core of α-synuclein from invisible crystals

Nature - Tue, 09/08/2015 - 23:00

Structure of the toxic core of α-synuclein from invisible crystals

Nature 525, 7570 (2015). doi:10.1038/nature15368

Authors: Jose A. Rodriguez, Magdalena I. Ivanova, Michael R. Sawaya, Duilio Cascio, Francis E. Reyes, Dan Shi, Smriti Sangwan, Elizabeth L. Guenther, Lisa M. Johnson, Meng Zhang, Lin Jiang, Mark A. Arbing, Brent L. Nannenga, Johan Hattne, Julian Whitelegge, Aaron S. Brewster, Marc Messerschmidt, Sébastien Boutet, Nicholas K. Sauter, Tamir Gonen & David S. Eisenberg

The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of

Categories: Journal Articles

Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm

Nature - Tue, 09/08/2015 - 23:00

Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm

Nature 525, 7570 (2015). doi:10.1038/nature15365

Authors: Meilina Ong-Abdullah, Jared M. Ordway, Nan Jiang, Siew-Eng Ooi, Sau-Yee Kok, Norashikin Sarpan, Nuraziyan Azimi, Ahmad Tarmizi Hashim, Zamzuri Ishak, Samsul Kamal Rosli, Fadila Ahmad Malike, Nor Azwani Abu Bakar, Marhalil Marjuni, Norziha Abdullah, Zulkifli Yaakub, Mohd Din Amiruddin, Rajanaidu Nookiah, Rajinder Singh, Eng-Ti Leslie Low, Kuang-Lim Chan, Norazah Azizi, Steven W. Smith, Blaire Bacher, Muhammad A. Budiman, Andrew Van Brunt, Corey Wischmeyer, Melissa Beil, Michael Hogan, Nathan Lakey, Chin-Ching Lim, Xaviar Arulandoo, Choo-Kien Wong, Chin-Nee Choo, Wei-Chee Wong, Yen-Yen Kwan, Sharifah Shahrul Rabiah Syed Alwee, Ravigadevi Sambanthamurthi & Robert A. Martienssen

Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit ‘mantled’ abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, ‘mantling’ has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.

Categories: Journal Articles

Probing protease sensitivity of recombinant human erythropoietin reveals α3–α4 inter-helical loop as a stability determinant

ABSTRACT

Although unglycosylated HuEpo is fully functional, it has very short serum half-life. However, the mechanism of in vivo clearance of human Epo (HuEpo) remains largely unknown. In this study, the relative importance of protease-sensitive sites of recombinant HuEpo (rHuEpo) has been investigated by analysis of structural data coupled with in vivo half-life measurements. Our results identify α3-α4 inter-helical loop region as a target site of lysosomal protease Cathepsin L. Consistent with previously-reported lysosomal degradation of HuEpo, these results for the first time identify cleavage sites of rHuEpo by specific lysosomal proteases. Furthermore, in agreement with the lowered exposure of the peptide backbone around the cleavage site, remarkably substitutions of residues with bulkier amino acids result in significantly improved in vivo stability. Together, these results have implications for the mechanism of in vivo clearance of the protein in humans. Proteins 2015; 83:1813–1822. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Weak conservation of structural features in the interfaces of homologous transient protein–protein complexes

Protein Science - Tue, 09/08/2015 - 01:20
Abstract

Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.

Categories: Journal Articles

Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling

Protein Science - Tue, 09/08/2015 - 01:16
Abstract

Signaling in cells often involves co-localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'-5'-cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme-substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.

Categories: Journal Articles

A Reminiscence about Early Times of Vitreous Water in Electron Cryomicroscopy

Biophysical Journal - Mon, 09/07/2015 - 23:00
A white blackbird is not an issue, until you see one. I saw it in an article by Taylor and Glaeser (1) presenting frozen delicate biological specimens with high contrast and exquisite details. I am still unsure of what really happened with this specimen but, what is certain, is that frozen water was present and that the unstained biological material was more beautiful than anything I had seen before. For me, the path was marked and chance helped.
Categories: Journal Articles

Free fatty acid receptors: structural models and elucidation of ligand binding interactions

BMC Structural Biology - Mon, 09/07/2015 - 07:00
Background: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators. Results: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators. Conclusions: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.
Categories: Journal Articles

Mutations can cause light chains to be too stable or too unstable to form amyloid fibrils

Protein Science - Mon, 09/07/2015 - 05:05
Abstract

Light chain (AL) amyloidosis is an incurable human disease, where the amyloid precursor is a misfolding-prone immunoglobulin light-chain. Here, we identify the role of somatic mutations in the structure, stability and in vitro fibril formation for an amyloidogenic AL-12 protein by restoring four nonconservative mutations to their germline (wild-type) sequence. The single restorative mutations do not affect significantly the native structure, the unfolding pathway, and the reversibility of the protein. However, certain mutations either decrease (H32Y and H70D) or increase (R65S and Q96Y) the protein thermal stability. Interestingly, the most and the least stable mutants, Q96Y and H32Y, do not form amyloid fibrils under physiological conditions. Thus, Q96 and H32 are key residues for AL-12 stability and fibril formation and restoring them to the wild-type residues preclude amyloid formation. The mutants whose equilibrium is shifted to either the native or unfolded states barely sample transient partially folded states, and therefore do not form fibrils. These results agree with previous observations by our laboratory and others that amyloid formation occurs because of the sampling of partially folded states found within the unfolding transition (Blancas-Mejia and Ramirez-Alvarado, Ann Rev Biochem 2013;82:745–774). Here we provide a new insight on the AL amyloidosis mechanism by demonstrating that AL-12 does not follow the established thermodynamic hypothesis of amyloid formation. In this hypothesis, thermodynamically unstable proteins are more prone to amyloid formation. Here we show that within a thermal stability range, the most stable protein in this study is the most amyloidogenic protein.

Categories: Journal Articles

Structure of mammalian eIF3 in the context of the 43S preinitiation complex

Nature - Sun, 09/06/2015 - 23:00

Structure of mammalian eIF3 in the context of the 43S preinitiation complex

Nature 525, 7570 (2015). doi:10.1038/nature14891

Authors: Amedee des Georges, Vidya Dhote, Lauriane Kuhn, Christopher U. T. Hellen, Tatyana V. Pestova, Joachim Frank & Yaser Hashem

During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5′-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires

Categories: Journal Articles

Crystal structures of a double-barrelled fluoride ion channel

Nature - Sun, 09/06/2015 - 23:00

Crystal structures of a double-barrelled fluoride ion channel

Nature 525, 7570 (2015). doi:10.1038/nature14981

Authors: Randy B. Stockbridge, Ludmila Kolmakova-Partensky, Tania Shane, Akiko Koide, Shohei Koide, Christopher Miller & Simon Newstead

To contend with hazards posed by environmental fluoride, microorganisms export this anion through F−-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F− over Cl− and dual-topology dimeric assembly. To understand the chemical basis for F− permeation and how the antiparallel subunits convene to form a F−-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F− present, to a maximum resolution of 2.1 Å. The structures reveal a surprising ‘double-barrelled’ channel architecture in which two F− ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F− selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.

Categories: Journal Articles

A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

PLoS Computational Biology - Fri, 09/04/2015 - 16:00

by Elizabeth Ortiz-Gutiérrez, Karla García-Cruz, Eugenio Azpeitia, Aaron Castillo, María de la Paz Sánchez, Elena R. Álvarez-Buylla

Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.
Categories: Journal Articles

Evaluating the dynamics and electrostatic interactions of folded proteins in implicit solvents

Protein Science - Thu, 09/03/2015 - 04:47
Abstract

Three implicit solvent models, namely GBMVII, FACTS, and SCPISM, were evaluated for their abilities to emulate an explicit solvent environment by comparing the simulated conformational ensembles, dynamics, and electrostatic interactions of the Src SH2 domain and the Lyn kinase domain. This assessment in terms of structural features in folded proteins expands upon the use of hydration energy as a metric for comparison. All-against-all rms coordinate deviation, average positional fluctuations, and ion-pair distance distribution were used to compare the implicit solvent models with the TIP3P explicit solvent model. Our study shows that the Src SH2 domains solvated with TIP3P, GBMVII, and FACTS sample similar global conformations. Additionally, the Src SH2 ion-pair distance distributions of solvent-exposed side chains corresponding to TIP3P, GBMVII, and FACTS do not differ substantially, indicating that GBMVII and FACTS are capable of modeling these electrostatic interactions. The ion-pair distance distributions of SCPISM are distinct from others, demonstrating that these electrostatic interactions are not adequately reproduced with the SCPISM model. On the other hand, for the Lyn kinase domain, a non-globular protein with bilobal structure and a large concavity on the surface, implicit solvent does not accurately model solvation to faithfully reproduce partially buried electrostatic interactions and lobe-lobe conformations. Our work reveals that local structure and dynamics of small, globular proteins are modeled well using FACTS and GBMVII. Nonetheless, global conformations and electrostatic interactions in concavities of multi-lobal proteins resulting from simulations with implicit solvent models do not match those obtained from explicit water simulations.

Categories: Journal Articles
Syndicate content